DATE

1. If you multiply [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{34}{5}\)[/tex], what will you get?

2. Find the value of [tex]\(N\)[/tex] in the statement:
[tex]\[
\frac{4}{7} \times \frac{63}{5} = N
\][/tex]

3. If [tex]\(\frac{2}{9}\)[/tex] and [tex]\(4\)[/tex] and [tex]\(\frac{5}{8}\)[/tex] is list mortified, what is the product?

4. Multiply [tex]\(\frac{3.4}{5}\)[/tex] and [tex]\(\frac{6}{8}\)[/tex].

5. The product of [tex]\(4 \frac{5}{6}\)[/tex] and [tex]\(\frac{4}{5}\)[/tex] is?



Answer :

Sure, let's break down each part of your question step by step.

1. Multiplying [tex]\( \frac{5}{6} \)[/tex] and [tex]\( \frac{34}{5} \)[/tex]:
[tex]\[ \frac{5}{6} \times \frac{34}{5} = \frac{5 \times 34}{6 \times 5} = \frac{170}{30} \approx 5.6667 \][/tex]
So the result is approximately [tex]\( 5.6667 \)[/tex].

2. Finding the value of [tex]\( N \)[/tex] in the statement [tex]\( \frac{4}{7} \times \frac{63}{5} = N \)[/tex]:
[tex]\[ N = \frac{4}{7} \times \frac{63}{5} = \frac{4 \times 63}{7 \times 5} = \frac{252}{35} \approx 7.20 \][/tex]
So, [tex]\( N \approx 7.20 \)[/tex].

3. Multiplying [tex]\( \frac{2}{9} \)[/tex] and 4:
[tex]\[ \frac{2}{9} \times 4 = \frac{2 \times 4}{9} = \frac{8}{9} \approx 0.8889 \][/tex]
So the product is approximately [tex]\( 0.8889 \)[/tex].

4. Multiplying [tex]\( \frac{5}{8} \)[/tex] and [tex]\( \frac{3.4}{5} \)[/tex]:
[tex]\[ \frac{5}{8} \times \frac{3.4}{5} = \frac{5 \times 3.4}{8 \times 5} = \frac{17}{40} \approx 0.425 \][/tex]
So the product is approximately [tex]\( 0.425 \)[/tex].

5. Multiplying [tex]\( 4 \frac{5}{6} \)[/tex] and [tex]\( \frac{4}{5} \)[/tex]:
First, convert [tex]\( 4 \frac{5}{6} \)[/tex] to an improper fraction:
[tex]\[ 4 \frac{5}{6} = \frac{4 \times 6 + 5}{6} = \frac{24 + 5}{6} = \frac{29}{6} \][/tex]
Now multiply [tex]\( \frac{29}{6} \)[/tex] by [tex]\( \frac{4}{5} \)[/tex]:
[tex]\[ \frac{29}{6} \times \frac{4}{5} = \frac{29 \times 4}{6 \times 5} = \frac{116}{30} \approx 3.8667 \][/tex]
So the product is approximately [tex]\( 3.8667 \)[/tex].