Is [tex]$2^2 + 3^2 = 4^2$[/tex] a true statement? Explain.

A. Yes; [tex]$7 + 9 = 16$[/tex]
B. No; [tex][tex]$4 + 9 \neq 16$[/tex][/tex]
C. Yes; [tex]$4 + 9 = 13$[/tex]
D. No; [tex]$7 + 9 \neq 16$[/tex]



Answer :

Let's evaluate the given expression [tex]\( 2^2 + 3^2 = 4^2 \)[/tex] step-by-step to determine if it's a true statement.

1. Calculate [tex]\( 2^2 \)[/tex]:
[tex]\[ 2^2 = 2 \times 2 = 4 \][/tex]

2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[ 3^2 = 3 \times 3 = 9 \][/tex]

3. Calculate [tex]\( 4^2\)[/tex]:
[tex]\[ 4^2 = 4 \times 4 = 16 \][/tex]

4. Sum the results of [tex]\( 2^2 \)[/tex] and [tex]\( 3^2 \)[/tex]:
[tex]\[ 2^2 + 3^2 = 4 + 9 = 13 \][/tex]

5. Compare the sum, [tex]\( 13 \)[/tex], to [tex]\( 4^2 \)[/tex], which is [tex]\( 16 \)[/tex]:
[tex]\[ 13 \not= 16 \][/tex]

Since the left side of the equation, [tex]\( 13 \)[/tex], does not equal the right side, [tex]\( 16 \)[/tex], the statement [tex]\( 2^2 + 3^2 = 4^2 \)[/tex] is false.

Therefore, the correct answer is:
(B) No; [tex]\( 4 + 9 \neq 16 \)[/tex]