Question 4 (Multiple Choice, Worth 2 Points)

Order [tex]\sqrt[3]{88}, \frac{28}{9}, \sqrt{19}[/tex] from greatest to least.

A. [tex]\sqrt[3]{88}, \frac{28}{9}, \sqrt{19}[/tex]
B. [tex]\frac{28}{9}, \sqrt{19}, \sqrt[3]{88}[/tex]
C. [tex]\frac{28}{9}, \sqrt[3]{88}, \sqrt{19}[/tex]
D. [tex]\sqrt[3]{88}, \sqrt{19}, \frac{28}{9}[/tex]



Answer :

To order the numbers [tex]\(\sqrt[3]{88}\)[/tex], [tex]\(\frac{28}{9}\)[/tex], and [tex]\(\sqrt{19}\)[/tex] from greatest to least, we need to compute the approximate values of each expression.

1. First, let's find the cube root of 88:
[tex]\[\sqrt[3]{88} \approx 4.448\][/tex]

2. Next, let's calculate the value of [tex]\(\frac{28}{9}\)[/tex]:
[tex]\[\frac{28}{9} \approx 3.111\][/tex]

3. Finally, let's find the square root of 19:
[tex]\[\sqrt{19} \approx 4.359\][/tex]

Now, to order these values from greatest to least:
[tex]\[ 4.448 \quad (\sqrt[3]{88}), \quad 4.359 \quad (\sqrt{19}), \quad 3.111 \quad (\frac{28}{9}) \][/tex]

Hence, the correct order from greatest to least is:
[tex]\[ \sqrt[3]{88}, \sqrt{19}, \frac{28}{9} \][/tex]

Therefore, the correct choice is:
[tex]\[ \boxed{\sqrt[3]{88}, \sqrt{19}, \frac{28}{9}} \][/tex]