Write the following expression using a single exponent.

[tex]\[
\left(8^5\right)^2 \times 8^6
\][/tex]

A. [tex]\(8^{13}\)[/tex]

B. [tex]\(8^{16}\)[/tex]

C. [tex]\(8^{42}\)[/tex]

D. [tex]\(8^4\)[/tex]



Answer :

To simplify the given expression [tex]\(\left(8^5\right)^2 \times 8^6\)[/tex], we can follow these steps:

1. Simplify the power of a power:
- According to the property of exponents, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
- Apply this property to [tex]\(\left(8^5\right)^2\)[/tex].
[tex]\[ \left(8^5\right)^2 = 8^{5 \cdot 2} = 8^{10} \][/tex]

2. Multiply the resulting expression by [tex]\(8^6\)[/tex]:
- Use the property of exponents for multiplication, [tex]\(a^m \times a^n = a^{m + n}\)[/tex].
- Apply this property to combine [tex]\(8^{10}\)[/tex] and [tex]\(8^6\)[/tex].
[tex]\[ 8^{10} \times 8^6 = 8^{10 + 6} = 8^{16} \][/tex]

So, the expression [tex]\(\left(8^5\right)^2 \times 8^6\)[/tex] simplifies to [tex]\(8^{16}\)[/tex].

Thus, the correct answer is [tex]\( \text{B. } 8^{16} \)[/tex].