What is the mass of solvent (liquid) recovered in the sample?

Mass Solvent = (Boat + Solution) - (Boat + Dry)

[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline
Sample & \begin{tabular}{c}
Temperature \\
$\left({ }^{\circ} C \right)$
\end{tabular} & \begin{tabular}{c}
Boat Mass \\
$( g )$
\end{tabular} & \begin{tabular}{c}
Boat + Solution \\
$( g )$
\end{tabular} & \begin{tabular}{c}
Boat + Dry \\
$( g )$
\end{tabular} \\
\hline
1 & 20.5 & 0.720 & 0.898 & 0.798 \\
\hline
\end{tabular}
\][/tex]

A. 0.100 g
B. 0.798 g
C. 0.178 g
D. 0.078 g



Answer :

To determine the mass of the solvent (liquid) recovered in the sample, follow these steps:

1. Identify the masses provided:
- Boat mass: [tex]\(0.720 \, \text{g}\)[/tex]
- Boat + Solution mass: [tex]\(0.898 \, \text{g}\)[/tex]
- Boat + Dry mass: [tex]\(0.798 \, \text{g}\)[/tex]

2. Use the equation:
[tex]\[ \text{Mass Solvent} = (\text{Boat + Solution}) - (\text{Boat + Dry}) \][/tex]

3. Substitute the given values into the equation:
[tex]\[ \text{Mass Solvent} = 0.898 \, \text{g} - 0.798 \, \text{g} \][/tex]

4. Perform the subtraction:
[tex]\[ \text{Mass Solvent} = 0.100 \, \text{g} \][/tex]

Thus, the mass of the solvent recovered in the sample is [tex]\(0.100 \, \text{g}\)[/tex].