Answer :

Let's simplify the given algebraic expression step by step:

[tex]\[ -8x^2 - 6 + 11x + 9x^2 - 14x \][/tex]

1. Combine like terms for [tex]\(x^2\)[/tex]:

The terms involving [tex]\(x^2\)[/tex] are:
[tex]\[ -8x^2 \quad \text{and} \quad +9x^2 \][/tex]
Adding these together, we get:
[tex]\[ -8x^2 + 9x^2 = x^2 \][/tex]

2. Combine like terms for [tex]\(x\)[/tex]:

The terms involving [tex]\(x\)[/tex] are:
[tex]\[ +11x \quad \text{and} \quad -14x \][/tex]
Adding these together, we get:
[tex]\[ 11x - 14x = -3x \][/tex]

3. Combine the constant terms:

The constant term is:
[tex]\[ -6 \][/tex]

4. Put it all together:

After combining all like terms, the simplified expression is:
[tex]\[ x^2 - 3x - 6 \][/tex]

So, the simplified form of the given expression is:
[tex]\[ x^2 - 3x - 6 \][/tex]