Let's simplify the given algebraic expression step by step:
[tex]\[
-8x^2 - 6 + 11x + 9x^2 - 14x
\][/tex]
1. Combine like terms for [tex]\(x^2\)[/tex]:
The terms involving [tex]\(x^2\)[/tex] are:
[tex]\[
-8x^2 \quad \text{and} \quad +9x^2
\][/tex]
Adding these together, we get:
[tex]\[
-8x^2 + 9x^2 = x^2
\][/tex]
2. Combine like terms for [tex]\(x\)[/tex]:
The terms involving [tex]\(x\)[/tex] are:
[tex]\[
+11x \quad \text{and} \quad -14x
\][/tex]
Adding these together, we get:
[tex]\[
11x - 14x = -3x
\][/tex]
3. Combine the constant terms:
The constant term is:
[tex]\[
-6
\][/tex]
4. Put it all together:
After combining all like terms, the simplified expression is:
[tex]\[
x^2 - 3x - 6
\][/tex]
So, the simplified form of the given expression is:
[tex]\[
x^2 - 3x - 6
\][/tex]