Answer :

To find the limit [tex]\(\lim_{x \rightarrow \infty}(\sqrt{x-a}-\sqrt{x-b})\)[/tex], let's start by exploring the behavior of the function as [tex]\(x\)[/tex] approaches infinity.

1. Writing the expression in a more convenient form:

Begin with the original expression:
[tex]\[ \sqrt{x-a} - \sqrt{x-b} \][/tex]

2. Rationalize the expression:

To simplify this, we'll multiply and divide by the conjugate of the expression (i.e., [tex]\(\sqrt{x-a} + \sqrt{x-b}\)[/tex]). This helps us remove the square roots from the numerator:
[tex]\[ \left(\sqrt{x-a} - \sqrt{x-b}\right) \times \frac{\sqrt{x-a} + \sqrt{x-b}}{\sqrt{x-a} + \sqrt{x-b}} \][/tex]

Simplify the result:
[tex]\[ \frac{(\sqrt{x-a} - \sqrt{x-b})(\sqrt{x-a} + \sqrt{x-b})}{\sqrt{x-a} + \sqrt{x-b}} \][/tex]

3. Simplify the numerator:

The numerator now becomes a difference of squares:
[tex]\[ (\sqrt{x-a} - \sqrt{x-b})(\sqrt{x-a} + \sqrt{x-b}) = (x-a) - (x-b) = -a + b = b-a \][/tex]

So, we simplify our expression to:
[tex]\[ \frac{b-a}{\sqrt{x-a} + \sqrt{x-b}} \][/tex]

4. Evaluate the denominator:

As [tex]\(x\)[/tex] approaches infinity, both [tex]\(\sqrt{x-a}\)[/tex] and [tex]\(\sqrt{x-b}\)[/tex] will behave similarly to [tex]\(\sqrt{x}\)[/tex], since [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are constants. Therefore:
[tex]\[ \sqrt{x-a} + \sqrt{x-b} \approx \sqrt{x} + \sqrt{x} = 2\sqrt{x} \][/tex]

5. Substitute back and further simplify:

Plug the approximate values back into the expression:
[tex]\[ \frac{b-a}{2\sqrt{x}} \][/tex]

6. Evaluate the limit:

Now, consider the limit as [tex]\(x\)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{b-a}{2\sqrt{x}} \][/tex]

Since [tex]\(\sqrt{x}\)[/tex] increases without bound as [tex]\(x\)[/tex] goes to infinity, the fraction [tex]\(\frac{b-a}{2\sqrt{x}}\)[/tex] will approach 0. Thus, we have:
[tex]\[ \lim_{x \rightarrow \infty}(\sqrt{x-a}-\sqrt{x-b}) = 0 \][/tex]

So, the desired limit is:
[tex]\[ \boxed{0} \][/tex]