A set of solubility data is given below. What is the mass of the dry solute recovered?

\begin{tabular}{|c|c|c|c|c|}
\hline
Sample & \begin{tabular}{c}
Temperature \\
[tex]$\left({ }^{\circ} C \right)$[/tex]
\end{tabular} & \begin{tabular}{c}
Boat Mass \\
[tex]$( g )$[/tex]
\end{tabular} & \begin{tabular}{c}
Boat + \\
Solution [tex]$( g )$[/tex]
\end{tabular} & \begin{tabular}{c}
Boat + Dry \\
[tex]$( g )$[/tex]
\end{tabular} \\
\hline
2 & 30.1 & 0.730 & 0.929 & 0.816 \\
\hline
\end{tabular}

A. 0.761 g
B. 0.816 g
C. 0.086 g
D. 0.113 g



Answer :

Alright, let's solve this step-by-step to determine the mass of the dry solute recovered. Here's the data given:

- Temperature: [tex]\(30.1^{\circ}\text{C}\)[/tex]
- Mass of the boat (empty): [tex]\(0.730 \, \text{g}\)[/tex]
- Mass of the boat with the solution: [tex]\(0.929 \, \text{g}\)[/tex]
- Mass of the boat with the dry solute: [tex]\(0.816 \, \text{g}\)[/tex]

To find the mass of the dry solute, we need to follow these steps:

1. Calculate the mass of the solution:
[tex]\[ \text{Mass of solution} = \text{Mass of boat with solution} - \text{Mass of empty boat} \][/tex]
Plugging in the provided values:
[tex]\[ \text{Mass of solution} = 0.929 \, \text{g} - 0.730 \, \text{g} \][/tex]
[tex]\[ \text{Mass of solution} = 0.199 \, \text{g} \][/tex]

2. Calculate the mass of the dry solute:
[tex]\[ \text{Mass of dry solute} = \text{Mass of boat with dry solute} - \text{Mass of empty boat} \][/tex]
Plugging in the provided values:
[tex]\[ \text{Mass of dry solute} = 0.816 \, \text{g} - 0.730 \, \text{g} \][/tex]
[tex]\[ \text{Mass of dry solute} = 0.086 \, \text{g} \][/tex]

So, based on the provided data, the mass of the dry solute recovered is [tex]\(0.086 \, \text{g}\)[/tex].