Which expression is equivalent to the given expression?

[tex]\[
(3y - 4)(2y + 7) + 11y - 9
\][/tex]

A. [tex]\[6y^2 + 24y - 37\][/tex]

B. [tex]\[6y^2 + 11y + 19\][/tex]

C. [tex]\[9y - 37\][/tex]

D. [tex]\[16y - 6\][/tex]



Answer :

Sure! Let's simplify the given expression step by step to determine which of the provided options is equivalent to it.

Given:
[tex]\[ (3y - 4)(2y + 7) + 11y - 9 \][/tex]

Step 1: Expand the product [tex]\((3y - 4)(2y + 7)\)[/tex].

Using the distributive property (also known as the FOIL method for binomials):

[tex]\[ (3y - 4)(2y + 7) = 3y \cdot 2y + 3y \cdot 7 - 4 \cdot 2y - 4 \cdot 7 \][/tex]

[tex]\[ = 6y^2 + 21y - 8y - 28 \][/tex]

Combine like terms:

[tex]\[ = 6y^2 + (21y - 8y) - 28 \][/tex]

[tex]\[ = 6y^2 + 13y - 28 \][/tex]

Step 2: Add the remaining terms in the original expression:

[tex]\[ 6y^2 + 13y - 28 + 11y - 9 \][/tex]

Combine like terms again:

[tex]\[ 6y^2 + (13y + 11y) - 28 - 9 \][/tex]

[tex]\[ = 6y^2 + 24y - 37 \][/tex]

So, the expression simplifies to:

[tex]\[ 6y^2 + 24y - 37 \][/tex]

Conclusion: The expression equivalent to [tex]\((3y-4)(2y+7) + 11y - 9\)[/tex] is:

[tex]\[ 6y^2 + 24y - 37 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{A. \; 6y^2 + 24y - 37} \][/tex]