What is the value of [tex]\cos \left(\frac{4 \pi}{3}\right)[/tex]?

A. [tex]-\frac{\sqrt{3}}{2}[/tex]
B. [tex]-\frac{1}{2}[/tex]
C. [tex]\frac{1}{2}[/tex]
D. [tex]\frac{\sqrt{3}}{2}[/tex]



Answer :

To find the value of [tex]\(\cos \left( \frac{4 \pi}{3} \right)\)[/tex], consider the standard position of the angle on the unit circle.

1. Determine the Reference Angle:
[tex]\[ \frac{4\pi}{3} \text{ radians} \][/tex]
- Since [tex]\(\pi\)[/tex] radians is equivalent to 180 degrees, [tex]\(\frac{4\pi}{3} \approx 240\)[/tex] degrees.

2. Identify the Quadrant:
- [tex]\(\frac{4\pi}{3}\)[/tex] radians (or 240 degrees) falls in the third quadrant of the unit circle.

3. Evaluate the Cosine in the Third Quadrant:
- In the third quadrant, cosine values are negative.

4. Reference Angle for the Third Quadrant:
- Calculate the reference angle: [tex]\(\frac{4\pi}{3} - \pi = \frac{\pi}{3}\)[/tex].

5. Cosine of the Reference Angle:
- The cosine of [tex]\(\frac{\pi}{3}\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].

6. Applying the Sign:
- Since we are in the third quadrant where cosine is negative:
[tex]\[ \cos \left( \frac{4 \pi}{3} \right) = - \cos \left(\frac{\pi}{3}\right) = -\frac{1}{2} \][/tex]

Therefore, the value of [tex]\(\cos \left(\frac{4 \pi}{3}\right)\)[/tex] is:

[tex]\[ -\frac{1}{2} \][/tex]

So, the correct answer is:
[tex]\[ -\frac{1}{2} \][/tex]