Which trigonometric expressions equal [tex]$-\frac{1}{2}$[/tex]? Check all that apply.

A. [tex]$\cos \left(120^{\circ}\right)$[/tex]
B. [tex]$\sin \left(\frac{7 \pi}{6}\right)$[/tex]
C. [tex]$\sin \left(-120^{\circ}\right)$[/tex]
D. [tex]$\cos \left(\frac{7 \pi}{6}\right)$[/tex]
E. [tex]$\cos \left(-\frac{10 \pi}{3}\right)$[/tex]



Answer :

To determine which trigonometric expressions equal [tex]\(-\frac{1}{2}\)[/tex], we need to evaluate each expression individually:

### 1. [tex]\(\cos(120^\circ)\)[/tex]

The cosine of [tex]\(120^\circ\)[/tex] can be evaluated using the unit circle:
[tex]\[ \cos(120^\circ) = -0.5 \][/tex]

### 2. [tex]\(\sin\left(\frac{7\pi}{6}\right)\)[/tex]

To find [tex]\(\sin\left(\frac{7\pi}{6}\right)\)[/tex], we recognize that [tex]\(\frac{7\pi}{6}\)[/tex] is in the third quadrant, where sine is negative:
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -0.5 \][/tex]

### 3. [tex]\(\sin(-120^\circ)\)[/tex]

For [tex]\(\sin(-120^\circ)\)[/tex], we consider the reference angle in the fourth quadrant where sine is negative:
[tex]\[ \sin(-120^\circ) \approx -0.866 \][/tex]
Thus, it does not equal [tex]\(-\frac{1}{2}\)[/tex].

### 4. [tex]\(\cos\left(\frac{7\pi}{6}\right)\)[/tex]

In the third quadrant, cosine is also negative:
[tex]\[ \cos\left(\frac{7\pi}{6}\right) \approx -0.866 \][/tex]
Hence, this value is not equal to [tex]\(-\frac{1}{2}\)[/tex].

### 5. [tex]\(\cos\left(-\frac{10\pi}{3}\right)\)[/tex]

First, simplify the angle [tex]\(-\frac{10\pi}{3}\)[/tex]. We recognize that rotating by [tex]\(2\pi\)[/tex] does not change the trigonometric ratios. After simplifying, the equivalent angle is:

[tex]\[ -\frac{10\pi}{3} \equiv -\frac{10\pi}{3} + 4\pi = -\frac{10\pi}{3} + \frac{12\pi}{3} = \frac{2\pi}{3} \][/tex]

Thus:
[tex]\[ \cos\left(\frac{2\pi}{3}\right) = -0.5 \][/tex]

### Summary

The expressions that equals [tex]\(-\frac{1}{2}\)[/tex] are:
- [tex]\(\cos(120^\circ)\)[/tex]
- [tex]\(\sin\left(\frac{7\pi}{6}\right)\)[/tex]
- [tex]\(\cos\left(-\frac{10\pi}{3}\right)\)[/tex]

Thus, the correct answers are:

- [tex]\(\cos(120^\circ)\)[/tex]
- [tex]\(\sin\left(\frac{7\pi}{6}\right)\)[/tex]
- [tex]\(\cos\left(-\frac{10\pi}{3}\right)\)[/tex]