Which value of [tex]x[/tex] makes this equation true?

[tex]-12x - 2(x + 9) = 5(x + 4)[/tex]

A. -2
B. [tex]-\frac{1}{3}[/tex]
C. [tex]\frac{13}{19}[/tex]
D. 5



Answer :

Let's solve the equation step-by-step:

The given equation is:
[tex]\[ -12x - 2(x + 9) = 5(x + 4) \][/tex]

First, we need to distribute the terms inside the parentheses:

[tex]\[ -12x - 2(x + 9) = 5(x + 4) \][/tex]
[tex]\[ -12x - 2x - 18 = 5x + 20 \][/tex]

Next, combine the like terms on the left side of the equation:

[tex]\[ -14x - 18 = 5x + 20 \][/tex]

Now, we want to isolate [tex]\( x \)[/tex], so let's move all terms involving [tex]\( x \)[/tex] to one side and the constant terms to the other side. To do this, we add [tex]\( 14x \)[/tex] to both sides:

[tex]\[ -14x + 14x - 18 = 5x + 14x + 20 \][/tex]
[tex]\[ -18 = 19x + 20 \][/tex]

Next, subtract 20 from both sides to isolate the term with [tex]\( x \)[/tex]:

[tex]\[ -18 - 20 = 19x \][/tex]
[tex]\[ -38 = 19x \][/tex]

Divide both sides by 19 to solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{-38}{19} \][/tex]
[tex]\[ x = -2 \][/tex]

So, the value of [tex]\( x \)[/tex] that makes the equation true is:
[tex]\[ \boxed{-2} \][/tex]

Looking at the given options, the correct answer is:
A. -2