Let [tex]$x, y$[/tex] be numbers [tex]$(x, y \neq 0)$[/tex]. Simplify each of the following expressions.

[tex]\[
\frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}}
\][/tex]



Answer :

To simplify the expression [tex]\(\frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}}\)[/tex], follow these steps:

1. Rewrite the Expression:
We start with the expression:
[tex]\[ \frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}} \][/tex]

2. Combine Fractions:
We can combine the two fractions into a single fraction:
[tex]\[ \frac{x^{41} \cdot y^{15}}{y^{15} \cdot x^{41}} \][/tex]

3. Simplify the Numerator and Denominator:
Notice that in both the numerator and denominator, we have the same terms [tex]\(x^{41}\)[/tex] and [tex]\(y^{15}\)[/tex]:
[tex]\[ \frac{x^{41} \cdot y^{15}}{y^{15} \cdot x^{41}} \][/tex]

4. Cancel Out Like Terms:
The [tex]\(x^{41}\)[/tex] term in the numerator cancels with the [tex]\(x^{41}\)[/tex] term in the denominator, and similarly, the [tex]\(y^{15}\)[/tex] term in the numerator cancels with the [tex]\(y^{15}\)[/tex] term in the denominator:
[tex]\[ \frac{1}{1} \][/tex]

5. Simplified Result:
After canceling out the like terms, the expression simplifies to:
[tex]\[ 1 \][/tex]

Thus, the simplified expression is:
[tex]\[ \frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}} = 1 \][/tex]