What is the solution to [tex]|x-6| \geq 5[/tex]?

A. [tex]1 \leq x \leq 11[/tex]
B. [tex]-11 \leq x \leq 1[/tex]
C. [tex]x \geq 11[/tex] or [tex]x \leq 1[/tex]
D. [tex]x \geq 1[/tex] or [tex]x \leq -11[/tex]



Answer :

Sure, let's solve the inequality [tex]\( |x - 6| \geq 5 \)[/tex].

The absolute value inequality [tex]\( |x - 6| \geq 5 \)[/tex] can be broken into two separate inequalities:

1. [tex]\( x - 6 \geq 5 \)[/tex]
2. [tex]\( -(x - 6) \geq 5 \)[/tex] or equivalently [tex]\( x - 6 \leq -5 \)[/tex]

Now let's solve each inequality separately.

### Solving the first inequality:

[tex]\[ x - 6 \geq 5 \][/tex]

To isolate [tex]\( x \)[/tex], add 6 to both sides:

[tex]\[ x \geq 11 \][/tex]

### Solving the second inequality:

[tex]\[ x - 6 \leq -5 \][/tex]

To isolate [tex]\( x \)[/tex], add 6 to both sides:

[tex]\[ x \leq 1 \][/tex]

### Combining the solutions:

The two solutions to the inequality [tex]\( |x - 6| \geq 5 \)[/tex] are:

[tex]\[ x \geq 11 \][/tex]
or
[tex]\[ x \leq 1 \][/tex]

Thus, the complete solution combines these two cases. Therefore, the solution to the inequality [tex]\( |x - 6| \geq 5 \)[/tex] is:

[tex]\[ x \geq 11 \text{ or } x \leq 1 \][/tex]

The correct answer is:

C. [tex]\( x \geq 11 \text{ or } x \leq 1 \)[/tex]