Answer :

To find [tex]\( f(12) \)[/tex] for the function [tex]\( f(x) = 2x^2 + 5x - 17 \)[/tex], follow these steps:

1. Substitute [tex]\( x = 12 \)[/tex] into the function [tex]\( f(x) \)[/tex].

So, [tex]\( f(12) = 2(12)^2 + 5(12) - 17 \)[/tex].

2. Compute the exponentiation.

Calculate [tex]\( 12^2 \)[/tex]:
[tex]\[ 12^2 = 144 \][/tex]

3. Multiply by 2.

Calculate [tex]\( 2 \times 144 \)[/tex]:
[tex]\[ 2 \times 144 = 288 \][/tex]

4. Multiply 5 by 12.

Calculate [tex]\( 5 \times 12 \)[/tex]:
[tex]\[ 5 \times 12 = 60 \][/tex]

5. Add the results from steps 3 and 4.

So, [tex]\( 288 + 60 = 348 \)[/tex]

6. Subtract 17 from the result of step 5.

Calculate [tex]\( 348 - 17 \)[/tex]:
[tex]\[ 348 - 17 = 331 \][/tex]

Therefore, [tex]\( f(12) = 331 \)[/tex].