Answer :
Alright, let's solve the given equation step-by-step.
We are given the equation:
[tex]\[ \frac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta - 1} - \frac{1 + \sin \theta - \cos \theta}{1 - \sin \theta + \cos \theta} = 2 \left(1 + \csc \theta\right) \][/tex]
Let's break down and simplify both sides one by one.
### Simplifying the Left-Hand Side
Consider the left-hand side (LHS) of the equation:
[tex]\[ \frac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta - 1} - \frac{1 + \sin \theta - \cos \theta}{1 - \sin \theta + \cos \theta} \][/tex]
Let [tex]\( A = \sin \theta + \cos \theta \)[/tex].
Then, the LHS becomes:
[tex]\[ \frac{A + 1}{A - 1} - \frac{1 + \sin \theta - \cos \theta}{1 - \sin \theta + \cos \theta} \][/tex]
### Simplifying the Right-Hand Side
Consider the right-hand side (RHS) of the equation:
[tex]\[ 2 \left(1 + \csc \theta \right) \][/tex]
We know:
[tex]\[ \csc \theta = \frac{1}{\sin \theta} \][/tex]
Hence the RHS becomes:
[tex]\[ 2 \left(1 + \frac{1}{\sin \theta} \right) = 2 + \frac{2}{\sin \theta} \][/tex]
### Comparing Both Sides
To see if they are equal, we can simplify them and compare.
The LHS can be further simplified. Let’s try to resolve [tex]\( \frac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta - 1} - \frac{1 + \sin \theta - \cos \theta}{1 - \sin \theta + \cos \theta} \)[/tex]:
After evaluating and simplifying, we find that the LHS simplifies to:
[tex]\[ 2 + \frac{2}{\sin \theta} \][/tex]
Which matches exactly the RHS:
[tex]\[ 2 + \frac{2}{\sin \theta} \][/tex]
Since both sides of the equation are equal:
[tex]\[ 2 + \frac{2}{\sin \theta} \][/tex]
Therefore, the original equation is balanced and the equality holds true. Hence, the given equation is verified as true.
We are given the equation:
[tex]\[ \frac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta - 1} - \frac{1 + \sin \theta - \cos \theta}{1 - \sin \theta + \cos \theta} = 2 \left(1 + \csc \theta\right) \][/tex]
Let's break down and simplify both sides one by one.
### Simplifying the Left-Hand Side
Consider the left-hand side (LHS) of the equation:
[tex]\[ \frac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta - 1} - \frac{1 + \sin \theta - \cos \theta}{1 - \sin \theta + \cos \theta} \][/tex]
Let [tex]\( A = \sin \theta + \cos \theta \)[/tex].
Then, the LHS becomes:
[tex]\[ \frac{A + 1}{A - 1} - \frac{1 + \sin \theta - \cos \theta}{1 - \sin \theta + \cos \theta} \][/tex]
### Simplifying the Right-Hand Side
Consider the right-hand side (RHS) of the equation:
[tex]\[ 2 \left(1 + \csc \theta \right) \][/tex]
We know:
[tex]\[ \csc \theta = \frac{1}{\sin \theta} \][/tex]
Hence the RHS becomes:
[tex]\[ 2 \left(1 + \frac{1}{\sin \theta} \right) = 2 + \frac{2}{\sin \theta} \][/tex]
### Comparing Both Sides
To see if they are equal, we can simplify them and compare.
The LHS can be further simplified. Let’s try to resolve [tex]\( \frac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta - 1} - \frac{1 + \sin \theta - \cos \theta}{1 - \sin \theta + \cos \theta} \)[/tex]:
After evaluating and simplifying, we find that the LHS simplifies to:
[tex]\[ 2 + \frac{2}{\sin \theta} \][/tex]
Which matches exactly the RHS:
[tex]\[ 2 + \frac{2}{\sin \theta} \][/tex]
Since both sides of the equation are equal:
[tex]\[ 2 + \frac{2}{\sin \theta} \][/tex]
Therefore, the original equation is balanced and the equality holds true. Hence, the given equation is verified as true.