Answer :

Certainly! Let's solve the problem step by step:

1. Given Information:
We are given that [tex]\( \cot A = \sqrt{3} \)[/tex].

2. Determine [tex]\( \tan A \)[/tex]:
- We know the relation between cotangent and tangent:
[tex]\[ \cot A = \frac{1}{\tan A} \][/tex]
- Given [tex]\( \cot A = \sqrt{3} \)[/tex], we can find [tex]\( \tan A \)[/tex]:
[tex]\[ \tan A = \frac{1}{\sqrt{3}} \approx 0.577 \][/tex]

3. Determine [tex]\( \sec^2 A \)[/tex]:
- The identity involving secant and tangent is:
[tex]\[ \sec^2 A = 1 + \tan^2 A \][/tex]
- We know [tex]\( \tan A = 0.577 \)[/tex]:
[tex]\[ \tan^2 A = (0.577)^2 \approx 0.333 \][/tex]
- So:
[tex]\[ \sec^2 A = 1 + 0.333 \approx 1.333 \][/tex]

4. Determine [tex]\( \cos^2 A \)[/tex]:
- The relation between secant and cosine is:
[tex]\[ \sec A = \frac{1}{\cos A} \][/tex]
- Therefore:
[tex]\[ \sec^2 A = \frac{1}{\cos^2 A} \][/tex]
- Given that [tex]\( \sec^2 A \approx 1.333 \)[/tex]:
[tex]\[ \cos^2 A = \frac{1}{1.333} \approx 0.75 \][/tex]

5. Calculate [tex]\( \sec^2 A - \cos^2 A \)[/tex]:
- Now, we subtract [tex]\( \cos^2 A \)[/tex] from [tex]\( \sec^2 A \)[/tex]:
[tex]\[ \sec^2 A - \cos^2 A = 1.333 - 0.75 \approx 0.583 \][/tex]

Therefore, the value of [tex]\( \sec^2 A - \cos^2 A \)[/tex] is approximately [tex]\( 0.583 \)[/tex].