Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

What is the solution set of this inequality?

[tex]\[ 1 \ \textless \ |x - 2| \ \textless \ 5 \][/tex]

[tex]\[ (-3, \ \square) \cup (\ \square, \ \square) \][/tex]



Answer :

To solve the inequality [tex]\(1 < |x - 2| < 5\)[/tex], we will break it down into two separate inequalities because it involves an absolute value.

First, recall that [tex]\( |a| < b \)[/tex] means [tex]\(-b < a < b\)[/tex], and [tex]\( |a| > c \)[/tex] means [tex]\( a < - c \)[/tex] or [tex]\( a > c \)[/tex].

### Step 1: Solve [tex]\( |x - 2| < 5 \)[/tex]

[tex]\[ |x - 2| < 5 \implies -5 < x - 2 < 5 \][/tex]

Next, solve the compound inequality by isolating [tex]\(x\)[/tex].

[tex]\[ -5 < x - 2 \implies -5 + 2 < x \implies -3 < x \][/tex]

[tex]\[ x - 2 < 5 \implies x < 5 + 2 \implies x < 7 \][/tex]

So, from [tex]\( |x - 2| < 5 \)[/tex] we get:

[tex]\[ -3 < x < 7 \][/tex]

### Step 2: Solve [tex]\( 1 < |x - 2| \)[/tex]

This absolute value inequality can be rewritten as two separate inequalities:

[tex]\[ |x - 2| > 1 \implies (x - 2 < -1 \quad \text{or} \quad x - 2 > 1) \][/tex]

For [tex]\(x - 2 < -1\)[/tex]:

[tex]\[ x - 2 < -1 \implies x < -1 + 2 \implies x < 1 \][/tex]

For [tex]\(x - 2 > 1\)[/tex]:

[tex]\[ x - 2 > 1 \implies x > 1 + 2 \implies x > 3 \][/tex]

### Step 3: Combine the results

We've determined two conditions:

1. [tex]\( -3 < x < 7 \)[/tex]
2. [tex]\( x < 1 \)[/tex] or [tex]\( x > 3 \)[/tex]

We'll now find the intersection of these conditions.

[tex]\[ (-3 < x < 7) \cap (x < 1 \cup x > 3) \][/tex]

This provides two intervals where both conditions are satisfied:

[tex]\[ (-3 < x < 1) \cup (3 < x < 7) \][/tex]

So the solution set of the inequality [tex]\(1 < |x - 2| < 5\)[/tex] is:

[tex]\[ (-3, 1) \cup (3, 7) \][/tex]

Thus, the correct values to fill in the blanks are:

[tex]\[ (-3, 1) \cup (3, 7) \][/tex]

So, we have:

### Box 1: 1
### Box 2: 3
### Box 3: 7