Answer :

Sure, let's break down the given expression step-by-step and simplify it.

The expression we need to simplify is:

[tex]\[ \frac{m + \left(m n^2\right)^{1/3} + \left(m^2 n\right)^{1/3}}{m-n} \times \left(1 - \frac{n^{1/3}}{m^{1/3}}\right) \][/tex]

### Step 1: Break Down the Terms
Let's rewrite the terms to make the exponents clearer:

1. [tex]\(\left(m n^2\right)^{1/3} = (m^{1/3} \times n^{2/3})\)[/tex]
2. [tex]\(\left(m^2 n\right)^{1/3} = (m^{2/3} \times n^{1/3})\)[/tex]

So we can rewrite the numerator as:

[tex]\[ m + m^{1/3} \times n^{2/3} + m^{2/3} \times n^{1/3} \][/tex]

### Step 2: Simplify the Fraction
Now consider the fraction:

[tex]\[ \frac{m + m^{1/3} \times n^{2/3} + m^{2/3} \times n^{1/3}}{m - n} \][/tex]

### Step 3: Factor and Simplify
We factor out the expression:

[tex]\[ \left(1 - \frac{n^{1/3}}{m^{1/3}}\right) \][/tex]

Multiply the two simplified parts together:

### Step 4: Combine the Two Parts
We combine the two terms in the original expression:

[tex]\[ \left(1 - \frac{n^{1/3}}{m^{1/3}}\right) \][/tex]

The complete expression becomes:

[tex]\[ \frac{m + m^{1/3} \times n^{2/3} + m^{2/3} \times n^{1/3}}{m - n} \][/tex]

When we combine those parts, the simplified version of the whole expression is:

[tex]\[ \frac{(m^{1/3} - n^{1/3})(m + (mn^2)^{1/3} + (m^2n)^{1/3})}{m^{1/3}(m - n)} \][/tex]

Thus, the simplified form of the given expression is:

[tex]\[ (m^{0.333333333333333} - n^{0.333333333333333}) \cdot \frac{m + (m \cdot n^2)^{0.333333333333333} + (m^2 \cdot n)^{0.333333333333333}}{m^{0.333333333333333} \cdot (m - n)} \][/tex]