Select the correct answer.

What is the vertex of the function [tex]$h(x)=|x+6|+3$[/tex]?

A. [tex]$(-6,-3)$[/tex]
B. [tex][tex]$(-6,3)$[/tex][/tex]
C. [tex]$(6,3)$[/tex]
D. [tex]$(6,-3)$[/tex]



Answer :

To determine the vertex of the function [tex]\(h(x) = |x + 6| + 3\)[/tex], we need to understand the structure of absolute value functions. The general form of an absolute value function is:

[tex]\[ h(x) = |x - h| + k \][/tex]

where [tex]\((h, k)\)[/tex] represents the vertex of the function.

Given the function:

[tex]\[ h(x) = |x + 6| + 3 \][/tex]

we should aim to rewrite it in the general form [tex]\(|x - h| + k\)[/tex]. Notice that [tex]\(x + 6\)[/tex] can be written as [tex]\(x - (-6)\)[/tex]. Therefore, the function becomes:

[tex]\[ h(x) = |x - (-6)| + 3 \][/tex]

In this form, it is clear that [tex]\(h = -6\)[/tex] and [tex]\(k = 3\)[/tex]. Hence, the vertex of the function is:

[tex]\((h, k) = (-6, 3)\)[/tex]

So, the correct answer is:

B. [tex]\((-6, 3)\)[/tex]