Select the correct answer.

The length of a rectangle is [tex] (x-8) [/tex] units, and its width is [tex] (x+11) [/tex] units. Which expression can represent the area of the rectangle?

A. [tex] x^2 - 3x - 88 [/tex]
B. [tex] x^2 - 3x + 88 [/tex]
C. [tex] x^2 + 3x - 88 [/tex]
D. [tex] x^2 + 3x + 88 [/tex]



Answer :

To determine which expression represents the area of the rectangle with the given length and width, we need to multiply these two terms together. Let's go step-by-step to find the product:

1. Write down the expressions for the length and width of the rectangle.
- Length: [tex]\( (x - 8) \)[/tex]
- Width: [tex]\( (x + 11) \)[/tex]

2. The formula for the area of a rectangle is:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]

3. Substitute the given expressions for the length and width:
[tex]\[ \text{Area} = (x - 8) \times (x + 11) \][/tex]

4. Use the distributive property (also known as the FOIL method for binomials) to expand the product:
[tex]\[ (x - 8) \times (x + 11) = x \cdot x + x \cdot 11 - 8 \cdot x - 8 \cdot 11 \][/tex]

5. Simplify the terms individually:
[tex]\[ x \cdot x = x^2 \][/tex]
[tex]\[ x \cdot 11 = 11x \][/tex]
[tex]\[ -8 \cdot x = -8x \][/tex]
[tex]\[ -8 \cdot 11 = -88 \][/tex]

6. Combine all these terms together:
[tex]\[ x^2 + 11x - 8x - 88 \][/tex]

7. Simplify by combining like terms:
[tex]\[ x^2 + (11x - 8x) - 88 \][/tex]
[tex]\[ x^2 + 3x - 88 \][/tex]

Therefore, the expression that represents the area of the rectangle is:

C. [tex]\( x^2 + 3x - 88 \)[/tex]