Type the correct answer in each box.

A race car is driven by a professional driver at [tex]99 \frac{\text{miles}}{\text{hour}}[/tex]. What is this speed in [tex]\frac{\text{kilometers}}{\text{hour}}[/tex] and [tex]\frac{\text{kilometers}}{\text{minute}}[/tex]?

1 mile [tex]=1.61[/tex] kilometers
1 hour [tex]=60[/tex] minutes
Express the answers to the correct number of significant figures.

The speed is equivalent to [tex]\square \frac{\text{kilometers}}{\text{hour}}[/tex], or [tex]\square \frac{\text{kilometers}}{\text{minute}}[/tex].



Answer :

To solve the problem of converting the speed of a race car from miles per hour to both kilometers per hour and kilometers per minute, we will go through the process step-by-step.

First, we convert the speed from miles per hour to kilometers per hour:
1. Given that the speed is [tex]\( 99 \frac{\text{miles}}{\text{hour}} \)[/tex].
2. The conversion factor is [tex]\( 1 \text{mile} = 1.61 \text{kilometers} \)[/tex].

To convert miles per hour to kilometers per hour, multiply the speed in miles per hour by the conversion factor:
[tex]\[ 99 \times 1.61 = 159.39 \][/tex]
Thus, the speed in kilometers per hour is [tex]\( 159.39 \frac{\text{kilometers}}{\text{hour}} \)[/tex].

Next, we convert the speed from kilometers per hour to kilometers per minute:
1. We know that [tex]\( 1 \text{hour} = 60 \text{minutes} \)[/tex].

To convert kilometers per hour to kilometers per minute, divide the speed in kilometers per hour by the number of minutes in an hour:
[tex]\[ \frac{159.39}{60} = 2.6565 \][/tex]
Therefore, the speed in kilometers per minute is [tex]\( 2.6565 \frac{\text{kilometers}}{\text{minute}} \)[/tex].

So, putting the final results together:
- The speed in kilometers per hour is [tex]\( \boxed{159.39} \frac{\text{kilometers}}{\text{hour}} \)[/tex].
- The speed in kilometers per minute is [tex]\( \boxed{2.6565} \frac{\text{kilometers}}{\text{minute}} \)[/tex].