Select the correct answer:

What is the value of [tex]$x$[/tex] in this linear system?

[tex]\[ \begin{array}{l}
2x + 8y - z = -9 \\
y + z = 7 \\
-x - y + z = 8 \\
\end{array} \][/tex]

A. 0
B. -1
C. 7
D. -7



Answer :

To determine the value of [tex]\( x \)[/tex] in the given system of linear equations, we need to solve the system step by step. The system is:

[tex]\[ \begin{cases} 2x + 8y - z = -9 \\ y + z = 7 \\ -x - y + z = 8 \\ \end{cases} \][/tex]

Step 1: Solve one of the equations for a variable. Let's start with the second equation:
[tex]\[ y + z = 7 \implies z = 7 - y \][/tex]

Step 2: Substitute [tex]\( z = 7 - y \)[/tex] into the other two equations:

For the first equation:
[tex]\[ 2x + 8y - (7 - y) = -9 \\ 2x + 8y - 7 + y = -9 \\ 2x + 9y - 7 = -9 \\ 2x + 9y = -2 \quad \text{(1)} \][/tex]

For the third equation:
[tex]\[ -x - y + (7 - y) = 8 \\ -x - y + 7 - y = 8 \\ -x - 2y + 7 = 8 \\ -x - 2y = 1 \quad \text{(2)} \][/tex]

Now we have a simplified system of two equations:
[tex]\[ \begin{cases} 2x + 9y = -2 \quad \text{(1)} \\ -x - 2y = 1 \quad \text{(2)} \\ \end{cases} \][/tex]

Step 3: Solve the simplified system. Start with the second equation:

[tex]\[ -x - 2y = 1 \implies x = -1 - 2y \quad \text{(3)} \][/tex]

Step 4: Substitute [tex]\( x = -1 - 2y \)[/tex] from equation (3) into equation (1):

[tex]\[ 2(-1 - 2y) + 9y = -2 \\ -2 - 4y + 9y = -2 \\ -2 + 5y = -2 \\ 5y = 0 \\ y = 0 \][/tex]

Step 5: Substitute [tex]\( y = 0 \)[/tex] back into equation (3) to find [tex]\( x \)[/tex]:

[tex]\[ x = -1 - 2(0) \\ x = -1 \][/tex]

So, the value of [tex]\( x \)[/tex] is:

[tex]\[ \boxed{-1} \][/tex]

The correct answer is B. -1