Type the correct answer in each box. If necessary, use / for the fraction bar.

Find the solution to this system of equations.

[tex]\[
\begin{array}{l}
x + y = 1 \\
2x - y + z = 1 \\
x + 2y + z = \frac{8}{3} \\
x = \square \\
y = \square \\
z = \square
\end{array}
\][/tex]



Answer :

To find the solution to the system of equations:

[tex]\[ \begin{array}{l} x + y = 1 \\ 2x - y + z = 1 \\ x + 2y + z = \frac{8}{3} \\ \end{array} \][/tex]

we solve this system step-by-step. The variables [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] that satisfy all three equations are:

[tex]\[ x = \frac{1}{3} \][/tex]

[tex]\[ y = \frac{2}{3} \][/tex]

[tex]\[ z = 1 \][/tex]

So, filling these into the blanks:

[tex]\[ \begin{array}{l} x = \frac{1}{3} \\ y = \frac{2}{3} \\ z = 1 \\ \end{array} \][/tex]

Thus, the solution to the given system of equations is:

[tex]\[ x = \boxed{\frac{1}{3}} \][/tex]

[tex]\[ y = \boxed{\frac{2}{3}} \][/tex]

[tex]\[ z = \boxed{1} \][/tex]