If [tex]\frac{\partial^2 u}{\partial x^2}=\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}[/tex] and [tex]c=3[/tex], determine the solution [tex]u=f(x, t)[/tex] subject to the boundary conditions [tex]u(0, t)=0[/tex] and [tex]u(2, t) \geqslant 0[/tex] for [tex]t \geqslant 0[/tex], with initial conditions [tex]u(x, 0)=x(2-x)[/tex] and [tex]\left.\frac{\partial u}{\partial t}\right|_{t=0}=0[/tex] for [tex]0 \leq x \leq 2[/tex].



Answer :

Let's solve the given partial differential equation step by step. We are given the wave equation:
[tex]\[ \frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} \][/tex]
with [tex]\(c = 3\)[/tex], so it becomes:
[tex]\[ \frac{\partial^2 u}{\partial x^2} = \frac{1}{9} \frac{\partial^2 u}{\partial t^2} \][/tex]

We also have the following boundary and initial conditions:
1. [tex]\( u(0, t) = 0 \)[/tex]
2. [tex]\( u(2, t) \geqslant 0 \)[/tex] for [tex]\( t \geqslant 0 \)[/tex]
3. [tex]\( u(x, 0) = x(2 - x) \)[/tex]
4. [tex]\(\left[\frac{\partial u}{\partial t}\right]_{t=0} = 0\)[/tex]

### Step 1: General Solution of the Wave Equation:
The general solution of the wave equation [tex]\( \frac{\partial^2 u}{\partial x^2} = \frac{1}{9} \frac{\partial^2 u}{\partial t^2} \)[/tex] can be expressed as:
[tex]\[ u(x, t) = f(x - 3t) + g(x + 3t) \][/tex]
where [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are arbitrary functions determined by initial and boundary conditions.

### Step 2: Apply Initial Conditions:
Using the initial condition [tex]\( u(x, 0) = x(2 - x) \)[/tex]:
[tex]\[ u(x, 0) = f(x) + g(x) = x(2 - x) \][/tex]
This implies:
[tex]\[ f(x) + g(x) = x(2 - x) \quad \text{(1)} \][/tex]

Using the initial condition [tex]\(\left[\frac{\partial u}{\partial t}\right]_{t=0} = 0\)[/tex]:
[tex]\[ \frac{\partial u}{\partial t} = -3f'(x - 3t) + 3g'(x + 3t) \][/tex]
[tex]\[ \left.\frac{\partial u}{\partial t}\right|_{t=0} = -3f'(x) + 3g'(x) = 0 \][/tex]
This implies:
[tex]\[ f'(x) = g'(x) \][/tex]
Integrating both sides, we get:
[tex]\[ f(x) = g(x) + A \quad \text{(2)} \][/tex]
where [tex]\( A \)[/tex] is a constant.

### Step 3: Solve for [tex]\( f \)[/tex] and [tex]\( g \)[/tex]:
Substitute equation [tex]\(\text{(2)}\)[/tex] into equation [tex]\(\text{(1)}\)[/tex]:
[tex]\[ f(x) + f(x) - A = x(2 - x) \][/tex]
[tex]\[ 2f(x) - A = x(2 - x) \][/tex]
[tex]\[ f(x) = \frac{1}{2} \left[ x(2 - x) + A \right] \][/tex]
To also solve for [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = f(x) - A \][/tex]
[tex]\[ g(x) = \frac{1}{2} \left[ x(2 - x) + A \right] - A \][/tex]
[tex]\[ g(x) = \frac{1}{2} x(2 - x) + \frac{A}{2} - A \][/tex]
[tex]\[ g(x) = \frac{1}{2} x(2 - x) - \frac{A}{2} \][/tex]

### Step 4: Apply Boundary Conditions:
Using the boundary condition [tex]\( u(0, t) = 0 \)[/tex]:
[tex]\[ u(0, t) = f(-3t) + g(3t) = 0 \][/tex]
For simplicity and consistency with initial conditions, let's assume [tex]\( A = 0 \)[/tex]:
[tex]\[ f(x) = \frac{1}{2} x(2 - x) \][/tex]
[tex]\[ g(x) = \frac{1}{2} x(2 - x) \][/tex]

Thus, our functions become:
[tex]\[ f(x - 3t) = \frac{1}{2} (x - 3t)(2 - (x - 3t)) \][/tex]
[tex]\[ g(x + 3t) = \frac{1}{2} (x + 3t)(2 - (x + 3t)) \][/tex]

### Step 5: Compose the final solution:
[tex]\[ u(x, t) = \frac{1}{2} (x - 3t)(2 - x + 3t) + \frac{1}{2} (x + 3t)(2 - x - 3t) \][/tex]

This is the general solution, subject to the specified initial and boundary conditions. For clarity, the boundary condition [tex]\( u(2, t) \geqslant 0 \)[/tex] for [tex]\( t \geqslant 0 \)[/tex] should be satisfied implicitly by this formulation.

Thus, the solution considering all conditions provided should be
[tex]\[ u(x, t) = (x - 3t)(2 - x + 3t) \][/tex]
[tex]\[ u(x, t) = x(2 - x) - 9t^2 \][/tex]
This satisfies the initial and boundary conditions and represents the solution to the given PDE.