Find the matrix [tex]$X$[/tex] such that [tex]$X = AX + B$[/tex], where [tex]$A = \left[\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right]$[/tex] and [tex][tex]$B = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \\ 3 & 3 \end{array}\right]$[/tex][/tex].



Answer :

To solve for the matrix [tex]\( X \)[/tex] in the equation [tex]\( X = AX + B \)[/tex], where

[tex]\[ A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \][/tex]

and

[tex]\[ B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 3 \end{bmatrix}, \][/tex]

we will go through the following steps:

1. Rewrite the equation:

The given equation is [tex]\( X = AX + B \)[/tex]. We can rewrite this as:

[tex]\[ X - AX = B \][/tex]

2. Factor out [tex]\( X \)[/tex]:

Rewriting [tex]\( X - AX \)[/tex] in matrix form involves factoring out [tex]\( X \)[/tex]:

[tex]\[ X(I - A) = B \][/tex]

Here, [tex]\( I \)[/tex] is the identity matrix of the same dimension as [tex]\( A \)[/tex]:

[tex]\[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]

3. Calculate [tex]\( I - A \)[/tex]:

Subtract [tex]\( A \)[/tex] from [tex]\( I \)[/tex]:

[tex]\[ I - A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]

4. Find the inverse of [tex]\( I - A \)[/tex]:

We need to find the inverse of [tex]\( I - A \)[/tex]:

[tex]\[ (I - A)^{-1} \][/tex]

The inverse of [tex]\( I - A \)[/tex] is calculated as follows. Let's denote [tex]\( I - A \)[/tex] as [tex]\( C \)[/tex]:

[tex]\[ C = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]

We can find the inverse of matrix [tex]\( C \)[/tex] using standard formulae, row reduction methods, or any computational aid.

For the matrix [tex]\( C \)[/tex], the inverse [tex]\( C^{-1} \)[/tex] is given by:

[tex]\[ C^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]

5. Compute [tex]\( X \)[/tex]:

Now, substituting into the equation [tex]\( X = B (I - A)^{-1} \)[/tex]:

[tex]\[ X = B C^{-1} \][/tex]

Substituting the values of [tex]\( B \)[/tex] and [tex]\( C^{-1} \)[/tex]:

[tex]\[ B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 3 \end{bmatrix}, \quad C^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \][/tex]

Performing the matrix multiplication [tex]\( B C^{-1} \)[/tex]:

[tex]\[ X = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 + 0 \cdot 0 & 1 \cdot (-1) + 2 \cdot 1 + 0 \cdot 0 & 1 \cdot 1 + 2 \cdot (-1) + 0 \cdot 1 \\ 2 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 & 2 \cdot (-1) + 1 \cdot 1 + 0 \cdot 0 & 2 \cdot 1 + 1 \cdot (-1) + 0 \cdot 1 \\ 3 \cdot 1 + 3 \cdot 0 + 0 \cdot 0 & 3 \cdot (-1) + 3 \cdot 1 + 0 \cdot 0 & 3 \cdot 1 + 3 \cdot (-1) + 0 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 1 \\ 3 & 0 & 0 \end{bmatrix} \][/tex]

Thus, the solution matrix [tex]\( X \)[/tex] is:

[tex]\[ X = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 1 \\ 3 & 0 & 0 \end{bmatrix} \][/tex]