Answer :

To solve for [tex]\( j \)[/tex] in the equation [tex]\( 0 = 5|j| \)[/tex], follow these steps:

1. Start with the given equation:

[tex]\[ 0 = 5|j| \][/tex]

2. Isolate the absolute value of [tex]\( j \)[/tex]:

Divide both sides of the equation by 5 to isolate [tex]\( |j| \)[/tex]:

[tex]\[ \frac{0}{5} = \frac{5|j|}{5} \][/tex]

Simplifying this, we get:

[tex]\[ 0 = |j| \][/tex]

3. Interpret the absolute value expression:

The absolute value of [tex]\( j \)[/tex] is the non-negative value of [tex]\( j \)[/tex]. Since [tex]\( |j| \)[/tex] represents the distance of [tex]\( j \)[/tex] from 0 on the number line, if [tex]\( |j| = 0 \)[/tex], then [tex]\( j \)[/tex] must be 0.

4. Solve for [tex]\( j \)[/tex]:

Hence,

[tex]\[ j = 0 \][/tex]

Thus, the solution to the equation [tex]\( 0 = 5|j| \)[/tex] is [tex]\( j = 0 \)[/tex].