13. Find the quotient of [tex]\frac{5}{31}[/tex] divided by [tex]\frac{15}{23}[/tex]. Reduce your answer to the lowest fraction.

A. [tex]\frac{93}{23}[/tex], or [tex]\frac{4^1}{23}[/tex]
B. [tex]\frac{23}{93}[/tex]
C. [tex]\frac{75}{373}[/tex]
D. [tex]\frac{115}{465}[/tex]



Answer :

To find the quotient of [tex]\( \frac{5}{31} \div \frac{15}{23} \)[/tex], follow these steps:

1. Identify the Division of Fractions:
[tex]\[ \frac{\frac{5}{31}}{\frac{15}{23}} \][/tex]

2. Convert the Division to Multiplication by Reciprocal:
When dividing fractions, you multiply by the reciprocal of the divisor. So,
[tex]\[ \frac{5}{31} \div \frac{15}{23} = \frac{5}{31} \times \frac{23}{15} \][/tex]

3. Multiply the Fractions:
Multiply the numerators and the denominators:
[tex]\[ \frac{5 \times 23}{31 \times 15} = \frac{115}{465} \][/tex]

4. Simplify the Fraction:
To simplify [tex]\( \frac{115}{465} \)[/tex], find the greatest common divisor (GCD) of 115 and 465. The GCD is 5.
[tex]\[ \frac{115 \div 5}{465 \div 5} = \frac{23}{93} \][/tex]

So, the quotient of [tex]\( \frac{5}{31} \div \frac{15}{23} \)[/tex] simplified to the lowest terms is:
[tex]\[ \frac{23}{93} \][/tex]

Therefore, the correct answer is:

B. [tex]\( \frac{23}{93} \)[/tex]