Solve for [tex]$\cos A, \cos B, \cos C$[/tex], if

[tex]\[
\begin{array}{l}
a = b \cos C + c \cos B \\
b = c \cos A + a \cos C \\
c = a \cos B + b \cos A
\end{array}
\][/tex]

and [tex]$abc \neq 0$[/tex].



Answer :

Certainly! Let's solve for [tex]\(\cos A\)[/tex], [tex]\(\cos B\)[/tex], and [tex]\(\cos C\)[/tex] given the system of equations:

[tex]\[ \begin{cases} a = b \cos C + c \cos B \\ b = c \cos A + a \cos C \\ c = a \cos B + b \cos A \\ \end{cases} \][/tex]
where [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are non-zero.

To solve this system of equations, we can use the symmetry and properties of the cosine function. Observe that the equations are symmetric with respect to [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].

Let's denote the following:
[tex]\[ \begin{cases} a = b \cos C + c \cos B \\ b = c \cos A + a \cos C \\ c = a \cos B + b \cos A \\ \end{cases} \][/tex]

Let's assume without loss of generality that [tex]\(a = b = c = 1\)[/tex]. This simplifies our equations to:

[tex]\[ \begin{cases} 1 = 1 \cos C + 1 \cos B \\ 1 = 1 \cos A + 1 \cos C \\ 1 = 1 \cos B + 1 \cos A \\ \end{cases} \][/tex]

This simplifies further to:

[tex]\[ \begin{cases} 1 = \cos C + \cos B \\ 1 = \cos A + \cos C \\ 1 = \cos B + \cos A \\ \end{cases} \][/tex]

Adding all three equations, we have:

[tex]\[ 1 + 1 + 1 = (\cos C + \cos B) + (\cos A + \cos C) + (\cos B + \cos A) \][/tex]

This simplifies to:

[tex]\[ 3 = 2(\cos A + \cos B + \cos C) \][/tex]

Therefore, we can solve for [tex]\(\cos A + \cos B + \cos C\)[/tex]:

[tex]\[ 3 = 2(\cos A + \cos B + \cos C) \][/tex]

[tex]\[ \cos A + \cos B + \cos C = \frac{3}{2} \][/tex]

Next, we substitute back into one of our individual equations. From the first equation, substituting [tex]\(\cos C + \cos B = 1\)[/tex], we get:

[tex]\[ \cos A = 1 - \cos C \][/tex]

However, using the fact that the equations are symmetrical, we see that each of the cosine terms must be equal, i.e.:

[tex]\[ \cos A = \cos B = \cos C \][/tex]

Substituting [tex]\(\cos A = \cos B = \cos C\)[/tex] into the sum equation:

[tex]\[ 3 \cos A = \frac{3}{2} \][/tex]

Solving for [tex]\(\cos A\)[/tex], we get:

[tex]\[ \cos A = \frac{1}{2} \][/tex]

Therefore, we find:

[tex]\[ \cos A = \cos B = \cos C = \frac{1}{2} \][/tex]

Thus, the solutions are:

[tex]\[ \boxed{\cos A = \cos B = \cos C = \frac{1}{2}} \][/tex]