Select the correct answer.

[tex]\[
A=\left[\begin{array}{rr}
1 & -4 \\
-3 & 2 \\
7 & -5
\end{array}\right] \quad \text{and} \quad B=\left[\begin{array}{rr}
1 & 7 \\
-2 & 11
\end{array}\right]
\][/tex]

Which of the following is the product matrix [tex]\(AB\)[/tex]?

A. [tex]\(AB=\left[\begin{array}{ccc}9 & -5 & 17 \\ -32 & 3 & -4\end{array}\right]\)[/tex]

B. [tex]\(AB=\left[\begin{array}{rr}9 & -37 \\ -7 & 1 \\ 17 & -6\end{array}\right]\)[/tex]

C. [tex]\(AB=\left[\begin{array}{ccc}9 & -7 & -17 \\ -37 & 1 & -6\end{array}\right]\)[/tex]

D. [tex]\(AB=\left[\begin{array}{rr}9 & -32 \\ -5 & 3 \\ 17 & -4\end{array}\right]\)[/tex]



Answer :

To find the product matrix [tex]\( AB \)[/tex], we follow the matrix multiplication rule, where each element of the resulting matrix is the dot product of the corresponding row of matrix [tex]\( A \)[/tex] and the corresponding column of matrix [tex]\( B \)[/tex].

Given matrices:
[tex]\[ A = \begin{bmatrix} 1 & -4 \\ -3 & 2 \\ 7 & -5 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} 1 & 7 \\ -2 & 11 \end{bmatrix} \][/tex]

Let's perform the matrix multiplication step by step:

1. Calculate the element in the first row, first column of [tex]\( AB \)[/tex]:
[tex]\[ (1 \cdot 1) + (-4 \cdot -2) = 1 + 8 = 9 \][/tex]

2. Calculate the element in the first row, second column of [tex]\( AB \)[/tex]:
[tex]\[ (1 \cdot 7) + (-4 \cdot 11) = 7 - 44 = -37 \][/tex]

3. Calculate the element in the second row, first column of [tex]\( AB \)[/tex]:
[tex]\[ (-3 \cdot 1) + (2 \cdot -2) = -3 - 4 = -7 \][/tex]

4. Calculate the element in the second row, second column of [tex]\( AB \)[/tex]:
[tex]\[ (-3 \cdot 7) + (2 \cdot 11) = -21 + 22 = 1 \][/tex]

5. Calculate the element in the third row, first column of [tex]\( AB \)[/tex]:
[tex]\[ (7 \cdot 1) + (-5 \cdot -2) = 7 + 10 = 17 \][/tex]

6. Calculate the element in the third row, second column of [tex]\( AB \)[/tex]:
[tex]\[ (7 \cdot 7) + (-5 \cdot 11) = 49 - 55 = -6 \][/tex]

Thus, the resulting product matrix [tex]\( AB \)[/tex] is:
[tex]\[ AB = \begin{bmatrix} 9 & -37 \\ -7 & 1 \\ 17 & -6 \end{bmatrix} \][/tex]

The correct answer is:

B. [tex]\( AB = \begin{bmatrix} 9 & -37 \\ -7 & 1 \\ 17 & -6 \end{bmatrix} \)[/tex]