Which of the following means the same as [tex]$2(3x-4)$[/tex]?

A. [tex]$5x-8$[/tex]
B. [tex][tex]$5x-4$[/tex][/tex]
C. [tex]$6x-8$[/tex]
D. [tex]$6x-4$[/tex]
E. None of these



Answer :

To determine which of the given options is equivalent to the expression [tex]\(2(3x - 4)\)[/tex], we can simplify the expression step-by-step.

1. Start with the given expression:
[tex]\[ 2(3x - 4) \][/tex]

2. Distribute the [tex]\(2\)[/tex] to both terms inside the parentheses:
[tex]\[ 2 \cdot 3x + 2 \cdot (-4) \][/tex]

3. Perform the multiplication:
[tex]\[ 6x - 8 \][/tex]

Thus, the simplified form of the expression [tex]\(2(3x - 4)\)[/tex] is [tex]\(6x - 8\)[/tex].

Now, let's compare this with the provided options to see which one matches:
- [tex]\(5x - 8\)[/tex]: This is not equivalent to [tex]\(6x - 8\)[/tex].
- [tex]\(5x - 4\)[/tex]: This is not equivalent to [tex]\(6x - 8\)[/tex].
- [tex]\(6x - 8\)[/tex]: This matches our simplified expression.
- [tex]\(6x - 4\)[/tex]: This is not equivalent to [tex]\(6x - 8\)[/tex].

Therefore, the correct option is:
[tex]\[ 6x - 8 \][/tex]

This option corresponds to the third listed option. Thus, the answer is [tex]\( \boxed{3} \)[/tex].