Drag the numbers to the correct locations on the matrix. Not all numbers will be used.

Consider matrix [tex]A[/tex].

[tex]\[ A = \begin{bmatrix} 0 & -6 \\ -3 & -2 \end{bmatrix} \][/tex]

What are the elements of the resulting matrix [tex]A^2[/tex]?

- 22
- [tex]-22[/tex]
- 12
- 6
- [tex]-18[/tex]
- [tex]-12[/tex]
- 18
- [tex]-6[/tex]



Answer :

To find the elements of the resulting matrix [tex]\( A^2 \)[/tex] for the given matrix [tex]\( A \)[/tex], we need to perform the matrix multiplication of [tex]\( A \)[/tex] with itself.

Given the matrix [tex]\( A \)[/tex]:

[tex]\[ A = \begin{pmatrix} 0 & -6 \\ -3 & -2 \end{pmatrix} \][/tex]

We need to calculate [tex]\( A^2 = A \times A \)[/tex].

Performing the matrix multiplication step-by-step:

1. First row, first column element of [tex]\( A^2 \)[/tex]:
[tex]\[ (0 \times 0) + (-6 \times -3) = 0 + 18 = 18 \][/tex]

2. First row, second column element of [tex]\( A^2 \)[/tex]:
[tex]\[ (0 \times -6) + (-6 \times -2) = 0 + 12 = 12 \][/tex]

3. Second row, first column element of [tex]\( A^2 \)[/tex]:
[tex]\[ (-3 \times 0) + (-2 \times -3) = 0 + 6 = 6 \][/tex]

4. Second row, second column element of [tex]\( A^2 \)[/tex]:
[tex]\[ (-3 \times -6) + (-2 \times -2) = 18 + 4 = 22 \][/tex]

So, the resulting matrix [tex]\( A^2 \)[/tex] is:

[tex]\[ A^2 = \begin{pmatrix} 18 & 12 \\ 6 & 22 \end{pmatrix} \][/tex]

Thus, the elements of the matrix [tex]\( A^2 \)[/tex] are 18, 12, 6, and 22.