Select the correct answer.

Which expression simplifies to [tex]$2 \sqrt{15}$[/tex]?

A. [tex]$\sqrt{17}$[/tex]
B. [tex][tex]$\sqrt{19}$[/tex][/tex]
C. [tex]$\sqrt{30}$[/tex]
D. [tex]$\sqrt{60}$[/tex]



Answer :

To determine which expression simplifies to [tex]\(2 \sqrt{15}\)[/tex], let's first evaluate the numerical values of the given square roots:

A. [tex]\(\sqrt{17}\)[/tex] is approximately [tex]\(4.1231\)[/tex].

B. [tex]\(\sqrt{19}\)[/tex] is approximately [tex]\(4.3589\)[/tex].

C. [tex]\(\sqrt{30}\)[/tex] is approximately [tex]\(5.4772\)[/tex].

D. [tex]\(\sqrt{60}\)[/tex] is approximately [tex]\(7.7460\)[/tex].

Next, let's check if any of these expressions can be simplified to [tex]\(2 \sqrt{15}\)[/tex].

To see if [tex]\(\sqrt{60}\)[/tex] can be simplified, we notice:

[tex]\[ \sqrt{60} = \sqrt{4 \times 15} = \sqrt{4} \times \sqrt{15} = 2 \times \sqrt{15} \][/tex]

Evaluating this simplification, we can clearly see that

[tex]\[ \sqrt{60} = 2 \sqrt{15} \][/tex]

So indeed, among the given options, [tex]\(\sqrt{60}\)[/tex] simplifies to [tex]\(2 \sqrt{15}\)[/tex].

Thus, the correct answer is:

D. [tex]\(\sqrt{60}\)[/tex]