Select the correct answer.

Which expression is equivalent to [tex]$18 \frac{1}{5} - \left(-22 \frac{2}{5}\right) - \left(-40 \frac{1}{5}\right)$[/tex]?

A. [tex]$18 \frac{1}{5} - 22 \frac{2}{5} - 40 \frac{1}{5}$[/tex]

B. [tex]$18 \frac{2}{5} + \left(-22 \frac{2}{5}\right) + \left(-40 \frac{1}{5}\right)$[/tex]

C. [tex][tex]$-18 \frac{1}{5} - 22 \frac{2}{5} + 40 \frac{1}{5}$[/tex][/tex]

D. [tex]$18 \frac{1}{5} + 22 \frac{2}{5} + 40 \frac{1}{5}$[/tex]



Answer :

To solve the expression [tex]\(18 \frac{1}{5}-\left(-22 \frac{2}{5}\right)-\left(-40 \frac{1}{5}\right)\)[/tex], let's break it down step-by-step:

1. Convert the mixed numbers to improper fractions:
- For [tex]\(18 \frac{1}{5}\)[/tex]:
[tex]\[ 18 \frac{1}{5} = 18 + \frac{1}{5} = \frac{90}{5} + \frac{1}{5} = \frac{91}{5} \][/tex]

- For [tex]\(-22 \frac{2}{5}\)[/tex]:
[tex]\[ -22 \frac{2}{5} = -22 + \frac{-2}{5} = \frac{-110}{5} + \frac{-2}{5} = \frac{-112}{5} \][/tex]

- For [tex]\(-40 \frac{1}{5}\)[/tex]:
[tex]\[ -40 \frac{1}{5} = -40 + \frac{-1}{5} = \frac{-200}{5} + \frac{-1}{5} = \frac{-201}{5} \][/tex]

2. Rewrite the expression with improper fractions:
[tex]\[ \frac{91}{5} - \left(\frac{-112}{5}\right) - \left(\frac{-201}{5}\right) \][/tex]

3. Simplify the expression by removing the parentheses:
[tex]\[ \frac{91}{5} - \left(\frac{-112}{5}\right) - \left(\frac{-201}{5}\right) = \frac{91}{5} + \frac{112}{5} + \frac{201}{5} \][/tex]

4. Combine the fractions (since the denominators are the same, combine the numerators):
[tex]\[ \frac{91 + 112 + 201}{5} \][/tex]

5. Calculate the sum in the numerator:
[tex]\[ 91 + 112 + 201 = 404 \][/tex]

6. Write the result as a single fraction:
[tex]\[ \frac{404}{5} \][/tex]

7. Simplify the fraction to a mixed number or decimal form:
[tex]\[ \frac{404}{5} = 80.8 \][/tex]

The correct expression equivalent to [tex]\(18 \frac{1}{5}-\left(-22 \frac{2}{5}\right)-\left(-40 \frac{1}{5}\right)\)[/tex] is:
[tex]\[ 18 \frac{1}{5} + 22 \frac{2}{5} + 40 \frac{1}{5} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{D} \][/tex]

Note that we achieved 80.8 as the final result, confirming that the operations are consistent with our step-by-step breakdown and ensuring [tex]\(18 \frac{1}{5} + 22 \frac{2}{5} + 40 \frac{1}{5}\)[/tex] is indeed the correct equivalent expression.