Using the properties of exponents, which expression is equivalent to [tex] x^{\frac{1}{6}} \cdot x^{\frac{1}{6}} [/tex]?

A. [tex] x^{\frac{1}{3}} [/tex]

B. [tex] x^{\frac{1}{12}} [/tex]

C. [tex] x^{\frac{1}{6}} [/tex]

D. [tex] x^{\frac{2}{6}} [/tex]



Answer :

Certainly! Let's solve the problem step-by-step using the properties of exponents.

We are given the expression [tex]\( x^{\frac{1}{6}} \cdot x^{\frac{1}{6}} \)[/tex].

1. Identify the property of exponents:

When multiplying two exponential expressions with the same base, we add their exponents. Mathematically, this is expressed as:
[tex]\[ a^m \cdot a^n = a^{m+n} \][/tex]
where [tex]\( a \)[/tex] is the base and [tex]\( m \)[/tex] and [tex]\( n \)[/tex] are the exponents.

2. Apply the property to the given expression:

In the given expression [tex]\( x^{\frac{1}{6}} \cdot x^{\frac{1}{6}} \)[/tex], the base is [tex]\( x \)[/tex] and the exponents are both [tex]\( \frac{1}{6} \)[/tex].

According to the property of exponents, we add the exponents together:
[tex]\[ x^{\frac{1}{6}} \cdot x^{\frac{1}{6}} = x^{\left(\frac{1}{6} + \frac{1}{6}\right)} \][/tex]

3. Perform the addition of the exponents:

[tex]\[ \frac{1}{6} + \frac{1}{6} = \frac{1 + 1}{6} = \frac{2}{6} = \frac{1}{3} \][/tex]

4. Rewrite the expression with the simplified exponent:

[tex]\[ x^{\left(\frac{1}{6} + \frac{1}{6}\right)} = x^{\frac{1}{3}} \][/tex]

Thus, the expression [tex]\( x^{\frac{1}{6}} \cdot x^{\frac{1}{6}} \)[/tex] is equivalent to [tex]\( x^{\frac{1}{3}} \)[/tex].

So, the equivalent expression is [tex]\( x^{\frac{1}{3}} \)[/tex].