Select the correct answer.

Simplify the following expression:

[tex]\[ 4 \sqrt{72} \][/tex]

A. [tex]\( 6 \sqrt{24} \)[/tex]

B. [tex]\( 144 \sqrt{6} \)[/tex]

C. [tex]\( 24 \sqrt{6} \)[/tex]

D. [tex]\( 24 \sqrt{2} \)[/tex]



Answer :

Let's simplify the expression [tex]\(4 \sqrt{72}\)[/tex] step-by-step.

1. Simplify the expression inside the square root:
[tex]\[ \sqrt{72} \][/tex]
Notice that [tex]\(72\)[/tex] can be factored into [tex]\(72 = 36 \times 2\)[/tex]. We can then use the property of square roots that states [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex] to simplify:
[tex]\[ \sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2} \][/tex]

2. Simplify the square root of [tex]\(36\)[/tex]:
[tex]\[ \sqrt{36} = 6 \][/tex]
Then, substitute back into the expression:
[tex]\[ \sqrt{72} = 6 \sqrt{2} \][/tex]

3. Multiply this result by 4:
[tex]\[ 4 \sqrt{72} = 4 \times (6 \sqrt{2}) = 4 \times 6 \times \sqrt{2} = 24 \sqrt{2} \][/tex]

Thus, the simplified form of [tex]\(4 \sqrt{72}\)[/tex] is [tex]\(24 \sqrt{2}\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{24 \sqrt{2}} \][/tex]