Select the correct answer.

What is the row echelon form of this matrix?

[tex]\[
\left[\begin{array}{ccc}
2 & 4 & 6 \\
-4 & 7 & 3 \\
4 & -1 & 2
\end{array}\right]
\][/tex]

A. [tex]\(\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 1\end{array}\right]\)[/tex]

B. [tex]\(\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 15 & 15 \\ 4 & -1 & 2\end{array}\right]\)[/tex]

C. [tex]\(\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\)[/tex]

D. [tex]\(\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -9 & 10\end{array}\right]\)[/tex]



Answer :

To determine the row echelon form of the given matrix

[tex]\[ \left[\begin{array}{ccc} 2 & 4 & 6 \\ -4 & 7 & 3 \\ 4 & -1 & 2 \end{array}\right], \][/tex]

we follow these steps:

1. First Row Reduction:
- The first step is to get a leading 1 in the first row. This can be done by dividing the first row by 2:
[tex]\[ \left[\begin{array}{ccc} 1 & 2 & 3 \\ -4 & 7 & 3 \\ 4 & -1 & 2 \end{array}\right] \][/tex]

2. Zeroing Out Below the Leading 1:
- To eliminate the -4 in the second row, we can add 4 times the first row to the second row:
[tex]\[ \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 15 & 15 \\ 4 & -1 & 2 \end{array}\right] \][/tex]

- To eliminate the 4 in the third row, we can subtract 4 times the first row from the third row:
[tex]\[ \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 15 & 15 \\ 0 & -9 & -10 \end{array}\right] \][/tex]

3. Second Row Reduction:
- Next, we want to get a leading 1 in the second row. First, we divide the second row by its leading coefficient (15):
[tex]\[ \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -9 & -10 \end{array}\right] \][/tex]

4. Zeroing Out Below the Leading 1 and Above if Necessary:
- To eliminate the -9 in the third row, we add 9 times the second row to the third row:
[tex]\[ \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{array}\right] \][/tex]

- To ensure all leading coefficients above are zeros in the final form, we scale back these entries (if applicable).

5. Final Form:
- Divide the third row by -1 to get the leading 1 in the final row:
[tex]\[ \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right] \][/tex]

Therefore, the correct answer is:

A. [tex]\(\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 1\end{array}\right]\)[/tex]

This matches the row echelon form of the given matrix.