Determine a correct sequence of row operations to change the matrix
[tex]
\left[\begin{array}{ccc} 5 & 1 & 2 \\ 2 & -2 & 6 \\ 7 & 0 & 1 \end{array}\right]
[/tex]
to the matrix
[tex]
\left[\begin{array}{ccc} 1 & -1 & 3 \\ 0 & 6 & -13 \\ 7 & 0 & 1 \end{array}\right]
[/tex].

Tiles:
- [tex]\(\frac{1}{2} R_2\)[/tex]
- [tex]\(-5 R_2 + R_1\)[/tex] replaces [tex]\(R_1\)[/tex]
- switch [tex]\(R_2\)[/tex] and [tex]\(R_1\)[/tex]
- [tex]\(3 R_1\)[/tex]
- [tex]\(-3 R_2 + R_3\)[/tex] replaces [tex]\(R_3\)[/tex]

Drag the tiles to the correct boxes. Not all tiles will be used.



Answer :

To transform the matrix [tex]\(\begin{bmatrix} 5 & 1 & 2 \\ 2 & -2 & 6 \\ 7 & 0 & 1 \end{bmatrix}\)[/tex] into [tex]\(\begin{bmatrix} 1 & -1 & 3 \\ 0 & 6 & -13 \\ 7 & 0 & 1 \end{bmatrix}\)[/tex], follow these steps:

1. Scale the second row [tex]\(R_2\)[/tex] by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \frac{1}{2} R_2 \][/tex]
This changes the matrix to:
[tex]\[ \begin{bmatrix} 5 & 1 & 2 \\ 1 & -1 & 3 \\ 7 & 0 & 1 \end{bmatrix} \][/tex]

2. Replace the first row [tex]\(R_1\)[/tex] with [tex]\(-5 R_2 + R_1\)[/tex]:
[tex]\[ -5 R_2 + R_1 \text{ replaces } R_1 \][/tex]
This changes the matrix to:
[tex]\[ \begin{bmatrix} 0 & 6 & -13 \\ 1 & -1 & 3 \\ 7 & 0 & 1 \end{bmatrix} \][/tex]

3. Switch the first row [tex]\(R_1\)[/tex] and the second row [tex]\(R_2\)[/tex]:
[tex]\[ \text{switch } R_2 \text{ and } R_1 \][/tex]
This changes the matrix to:
[tex]\[ \begin{bmatrix} 1 & -1 & 3 \\ 0 & 6 & -13 \\ 7 & 0 & 1 \end{bmatrix} \][/tex]

So, the sequence of row operations is:
1. [tex]\(\frac{1}{2} R_2\)[/tex]
2. [tex]\(-5 R_2 + R_1 \text{ replaces } R_1\)[/tex]
3. \text{switch } [tex]\(R_2\)[/tex] and [tex]\(R_1\)[/tex]

These steps transform the initial matrix into the desired final matrix.