Answer :
Absolutely, let's determine the amount of water needed to fill West Junior High's swimming pool by calculating its volume, step by step:
First, write the [tex]\(\text{formula for the volume of a rectangular prism}\)[/tex].
The formula for the volume of a rectangular prism is:
[tex]\[ V = \text{length} \times \text{width} \times \text{height} \][/tex]
Next, use parentheses when you substitute [tex]\(\text{for length, width, and height}\)[/tex].
Given:
- Length ([tex]\(l\)[/tex]) = 50 meters
- Width ([tex]\(w\)[/tex]) = 25 meters
- Height ([tex]\(h\)[/tex]) = 3 meters
Substitute these values into the formula:
[tex]\[ V = (50) \times (25) \times (3) \][/tex]
Now, simplify by [tex]\(\text{multiplying 50, 25, and 3}\)[/tex].
First, multiply 50 and 25:
[tex]\[ 50 \times 25 = 1250 \][/tex]
Next, multiply the result by 3:
[tex]\[ 1250 \times 3 = 3750 \][/tex]
The volume of the pool is [tex]\( \boxed{3750} \)[/tex] [tex]\( m^3 \)[/tex].
First, write the [tex]\(\text{formula for the volume of a rectangular prism}\)[/tex].
The formula for the volume of a rectangular prism is:
[tex]\[ V = \text{length} \times \text{width} \times \text{height} \][/tex]
Next, use parentheses when you substitute [tex]\(\text{for length, width, and height}\)[/tex].
Given:
- Length ([tex]\(l\)[/tex]) = 50 meters
- Width ([tex]\(w\)[/tex]) = 25 meters
- Height ([tex]\(h\)[/tex]) = 3 meters
Substitute these values into the formula:
[tex]\[ V = (50) \times (25) \times (3) \][/tex]
Now, simplify by [tex]\(\text{multiplying 50, 25, and 3}\)[/tex].
First, multiply 50 and 25:
[tex]\[ 50 \times 25 = 1250 \][/tex]
Next, multiply the result by 3:
[tex]\[ 1250 \times 3 = 3750 \][/tex]
The volume of the pool is [tex]\( \boxed{3750} \)[/tex] [tex]\( m^3 \)[/tex].