Answer :
To find the value of [tex]\(\left( \frac{f}{g} \right)'(9)\)[/tex], we will use the quotient rule for differentiation. The quotient rule states that if you have two differentiable functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], then the derivative of their quotient [tex]\(\frac{f(x)}{g(x)}\)[/tex] is given by:
[tex]\[ \left( \frac{f}{g} \right)' = \frac{f'g - fg'}{g^2} \][/tex]
We are given the following values:
- [tex]\(f(9) = -6\)[/tex]
- [tex]\(f'(9) = 3\)[/tex]
- [tex]\(g(9) = -8\)[/tex]
- [tex]\(g'(9) = 7\)[/tex]
We need to find [tex]\(\left( \frac{f}{g} \right)'(9)\)[/tex].
Substitute [tex]\(x = 9\)[/tex] into the quotient rule formula:
[tex]\[ \left( \frac{f}{g} \right)'(9) = \frac{f'(9) \cdot g(9) - f(9) \cdot g'(9)}{g(9)^2} \][/tex]
Substitute the given values into the formula:
[tex]\[ \left( \frac{f}{g} \right)'(9) = \frac{3 \cdot (-8) - (-6) \cdot 7}{(-8)^2} \][/tex]
Calculate the numerator:
[tex]\[ 3 \cdot (-8) = -24 \][/tex]
[tex]\[ -6 \cdot 7 = -42 \][/tex]
[tex]\[ \text{Numerator} = -24 - (-42) = -24 + 42 = 18 \][/tex]
Calculate the denominator:
[tex]\[ (-8)^2 = 64 \][/tex]
Now, combine the numerator and the denominator:
[tex]\[ \left( \frac{f}{g} \right)'(9) = \frac{18}{64} \][/tex]
Simplify the fraction:
[tex]\[ \frac{18}{64} = 0.28125 \][/tex]
Thus, the value of [tex]\(\left( \frac{f}{g} \right)'(9)\)[/tex] is:
[tex]\[ 0.28125 \][/tex]
[tex]\[ \left( \frac{f}{g} \right)' = \frac{f'g - fg'}{g^2} \][/tex]
We are given the following values:
- [tex]\(f(9) = -6\)[/tex]
- [tex]\(f'(9) = 3\)[/tex]
- [tex]\(g(9) = -8\)[/tex]
- [tex]\(g'(9) = 7\)[/tex]
We need to find [tex]\(\left( \frac{f}{g} \right)'(9)\)[/tex].
Substitute [tex]\(x = 9\)[/tex] into the quotient rule formula:
[tex]\[ \left( \frac{f}{g} \right)'(9) = \frac{f'(9) \cdot g(9) - f(9) \cdot g'(9)}{g(9)^2} \][/tex]
Substitute the given values into the formula:
[tex]\[ \left( \frac{f}{g} \right)'(9) = \frac{3 \cdot (-8) - (-6) \cdot 7}{(-8)^2} \][/tex]
Calculate the numerator:
[tex]\[ 3 \cdot (-8) = -24 \][/tex]
[tex]\[ -6 \cdot 7 = -42 \][/tex]
[tex]\[ \text{Numerator} = -24 - (-42) = -24 + 42 = 18 \][/tex]
Calculate the denominator:
[tex]\[ (-8)^2 = 64 \][/tex]
Now, combine the numerator and the denominator:
[tex]\[ \left( \frac{f}{g} \right)'(9) = \frac{18}{64} \][/tex]
Simplify the fraction:
[tex]\[ \frac{18}{64} = 0.28125 \][/tex]
Thus, the value of [tex]\(\left( \frac{f}{g} \right)'(9)\)[/tex] is:
[tex]\[ 0.28125 \][/tex]