Solve the inequality and graph the solution.

[tex]\[ -3(w + 4) + 7 \ \textless \ -23 \][/tex]

What is the solution? Select the correct choice below and fill in the answer box within your choice.
(Type an integer or a decimal.)

A. [tex]\( w \ \textless \ \)[/tex] [tex]\(\square\)[/tex]
B. [tex]\( w \leq \)[/tex] [tex]\(\square\)[/tex]
C. [tex]\( w \geq \)[/tex] [tex]\(\square\)[/tex]
D. [tex]\( w \ \textgreater \ \)[/tex] [tex]\(\square\)[/tex]



Answer :

To solve the inequality [tex]\(-3(w + 4) + 7 < -23\)[/tex], follow these steps:

1. Distribute the [tex]\(-3\)[/tex] across the terms inside the parentheses:
[tex]\[ -3(w + 4) + 7 < -23 \][/tex]
[tex]\[ -3w - 12 + 7 < -23 \][/tex]

2. Combine like terms:
[tex]\[ -3w - 5 < -23 \][/tex]

3. Isolate [tex]\(w\)[/tex] by first adding 5 to both sides of the inequality:
[tex]\[ -3w - 5 + 5 < -23 + 5 \][/tex]
[tex]\[ -3w < -18 \][/tex]

4. Divide both sides by [tex]\(-3\)[/tex], remembering that dividing by a negative number reverses the inequality sign:
[tex]\[ \frac{-3w}{-3} > \frac{-18}{-3} \][/tex]
[tex]\[ w > 6 \][/tex]

The solution to the inequality is [tex]\(w > 6\)[/tex].

Correct choice:
D. [tex]\(w >\)[/tex] 6

Graphing the solution:
On a number line, represent [tex]\(w > 6\)[/tex] by drawing an open circle at [tex]\(6\)[/tex] and shading everything to the right of 6.

Here's what the graph looks like:

[tex]\[ \begin{array}{ccccccccccccccc} \text{(---)} & \text{6)} & \text{(========================)} \\ \end{array} \][/tex]

The open circle on 6 indicates that 6 is not included in the solution, and the shading to the right illustrates all values greater than 6 are included.