2. What is the sum of [tex]\frac{1}{9}[/tex], [tex]\frac{2}{3}[/tex], and [tex]\frac{5}{18}[/tex]?

A. [tex]\frac{19}{18}[/tex]

B. [tex]\frac{8}{30}[/tex]

C. [tex]\frac{4}{15}[/tex]

D. [tex]\frac{12}{9}[/tex]



Answer :

To find the sum of the fractions [tex]\(\frac{1}{9}\)[/tex], [tex]\(\frac{2}{3}\)[/tex], and [tex]\(\frac{5}{18}\)[/tex], follow these steps:

1. Convert each fraction to have a common denominator:

First, identify a common denominator. The denominators here are 9, 3, and 18. The least common multiple (LCM) of these numbers is 18.

2. Convert each fraction to the common denominator of 18:

- For [tex]\(\frac{1}{9}\)[/tex]:
[tex]\[ \frac{1}{9} = \frac{1 \times 2}{9 \times 2} = \frac{2}{18} \][/tex]
- For [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \frac{2}{3} = \frac{2 \times 6}{3 \times 6} = \frac{12}{18} \][/tex]
- For [tex]\(\frac{5}{18}\)[/tex]:
[tex]\[ \frac{5}{18} \text{ (already in terms of 18, so it stays the same)} \][/tex]

3. Add the fractions together:

Now that all fractions have the same denominator, you can add the numerators together:
[tex]\[ \frac{2}{18} + \frac{12}{18} + \frac{5}{18} = \frac{2 + 12 + 5}{18} = \frac{19}{18} \][/tex]

4. Simplify the fraction:

The fraction [tex]\(\frac{19}{18}\)[/tex] is already in its simplest form as 19 and 18 have no common factors other than 1.

Therefore, the sum of [tex]\(\frac{1}{9}\)[/tex], [tex]\(\frac{2}{3}\)[/tex], and [tex]\(\frac{5}{18}\)[/tex] is [tex]\(\frac{19}{18}\)[/tex]. The correct choice is:

A. [tex]\(\frac{19}{18}\)[/tex]