The factor tree for 3,025 is shown. What is the simplest form of [tex]\sqrt{3,025}[/tex]?

A. 16
B. 55
C. [tex]5^2 \left(11^2\right)[/tex]
D. [tex]5^2 + \left(11^2\right)[/tex]



Answer :

To solve the problem of finding the simplest form of [tex]\(\sqrt{3025}\)[/tex], we need to follow a step-by-step approach. Let's dive into each step carefully.

Step 1: Find the prime factors of 3025

First, identify the factors of 3025.

1. 3025 is divisible by 5:
[tex]\[ 3025 \div 5 = 605 \][/tex]
2. 605 is also divisible by 5:
[tex]\[ 605 \div 5 = 121 \][/tex]
3. 121 is divisible by 11:
[tex]\[ 121 \div 11 = 11 \][/tex]
4. 11 is also divisible by 11:
[tex]\[ 11 \div 11 = 1 \][/tex]

Thus, the prime factors of 3025 are:
[tex]\[ 3025 = 5 \times 5 \times 11 \times 11 = 5^2 \times 11^2 \][/tex]

Step 2: Simplify the square root using the prime factors

Now, we need to take the square root of 3025. We use the property of square roots that [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex].

So, we break it down:
[tex]\[ \sqrt{3025} = \sqrt{5^2 \times 11^2} \][/tex]

Next, we separate the square root:
[tex]\[ \sqrt{3025} = \sqrt{5^2} \times \sqrt{11^2} \][/tex]

Since [tex]\(\sqrt{5^2} = 5\)[/tex] and [tex]\(\sqrt{11^2} = 11\)[/tex], we multiply these results:
[tex]\[ \sqrt{3025} = 5 \times 11 = 55 \][/tex]

Conclusion

Therefore, the simplest form of [tex]\(\sqrt{3025}\)[/tex] is [tex]\(55\)[/tex].

Among the provided options:
- 16
- 55
- [tex]\(5^2 \left(11^2\right)\)[/tex]
- [tex]\(5^2 + \left(11^2\right)\)[/tex]

The correct choice is:
[tex]\[ \boxed{55} \][/tex]