Factor completely: [tex][tex]$81 x^4 - y^4$[/tex][/tex]

A. [tex](9x^2 + y^2)(3x + y)(3x - y)[/tex]
B. [tex](9x^2 + y^2)(9x^2 - y^2)[/tex]
C. [tex](27x^3 + y^3)(3x - y)[/tex]
D. [tex](9x^2 - y^2)^2[/tex]



Answer :

To factor the expression [tex]\( 81x^4 - y^4 \)[/tex] completely, let's follow through the factoring process step by step, using algebraic techniques.

1. Identify the expression as a difference of squares:

We start with:
[tex]\[ 81x^4 - y^4 \][/tex]
Notice that both [tex]\( 81x^4 \)[/tex] and [tex]\( y^4 \)[/tex] are perfect squares. This allows us to write the expression as a difference of squares:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
where [tex]\( a^2 = 81x^4 \)[/tex] and [tex]\( b^2 = y^4 \)[/tex]. This gives us:
[tex]\[ a = 9x^2 \quad \text{and} \quad b = y^2 \][/tex]

2. Factor the difference of squares:

Applying the difference of squares formula to [tex]\( 81x^4 - y^4 \)[/tex], we get:
[tex]\[ 81x^4 - y^4 = (9x^2)^2 - (y^2)^2 = (9x^2 - y^2)(9x^2 + y^2) \][/tex]

3. Further factor the [tex]\( 9x^2 - y^2 \)[/tex] term:

Now, we need to factor [tex]\( 9x^2 - y^2 \)[/tex], which is also a difference of squares:
[tex]\[ 9x^2 - y^2 = (3x)^2 - (y)^2 = (3x - y)(3x + y) \][/tex]

4. Combine all factors:

We now have factored [tex]\( 81x^4 - y^4 \)[/tex] as:
[tex]\[ 81x^4 - y^4 = (9x^2 + y^2)(3x - y)(3x + y) \][/tex]

So, the completely factored form of [tex]\( 81x^4 - y^4 \)[/tex] is:
[tex]\[ (9x^2 + y^2)(3x - y)(3x + y) \][/tex]

Therefore, the correct answer is:

A) [tex]\(\left(9 x^2 + y^2\right) (3 x + y) (3 x - y)\)[/tex]