What is the range of the relation in the table below?

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
-2 & 0 \\
\hline
-1 & 2 \\
\hline
0 & 4 \\
\hline
1 & 2 \\
\hline
2 & 0 \\
\hline
\end{tabular}
\][/tex]

A. range: [tex]$\{0,2,4\}$[/tex]

B. range: [tex]$\{0,4\}$[/tex]

C. range: [tex]$\{-2,-1,0,1,2\}$[/tex]

D. range: [tex]$\{0,2\}$[/tex]



Answer :

To determine the range of the relation given in the table, we need to identify the unique [tex]\( y \)[/tex]-values that correspond to any [tex]\( x \)[/tex]-values. Let’s go through the steps:

1. Extract the [tex]\( y \)[/tex]-values from the table:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 0 \\ \hline -1 & 2 \\ \hline 0 & 4 \\ \hline 1 & 2 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]

From the table, the [tex]\( y \)[/tex]-values are: [tex]\( 0, 2, 4, 2, 0 \)[/tex].

2. Identify all unique [tex]\( y \)[/tex]-values:

Since we are looking for the range, we need to list all distinct [tex]\( y \)[/tex]-values. The unique values among [tex]\( 0, 2, 4, 2, 0 \)[/tex] are [tex]\( 0, 2, \)[/tex] and [tex]\( 4 \)[/tex].

3. Sort the unique [tex]\( y \)[/tex]-values (if needed):

In this context, it is often customary to present the range values in ascending order for clarity: [tex]\( 0, 2, 4 \)[/tex].

4. Write out the range:

Therefore, the range of the relation is:
[tex]\[ \{0, 2, 4\} \][/tex]

Based on our analysis, the correct range of the relation is [tex]\(\{0, 2, 4\}\)[/tex]. This aligns with the first option provided.