Calculate the product of [tex]\frac{8}{15}, \frac{6}{5}[/tex], and [tex]\frac{1}{3}[/tex].

A. [tex]\frac{16}{75}[/tex]
B. [tex]\frac{48}{15}[/tex]
C. [tex]\frac{48}{30}[/tex]
D. [tex]\frac{16}{15}[/tex]



Answer :

To find the product of the fractions [tex]\(\frac{8}{15}\)[/tex], [tex]\(\frac{6}{5}\)[/tex], and [tex]\(\frac{1}{3}\)[/tex], we will multiply the fractions together step by step.

First, let’s recall the process for multiplying fractions:
[tex]\[ \frac{a}{b} \times \frac{c}{d} \times \frac{e}{f} = \frac{a \times c \times e}{b \times d \times f} \][/tex]

Now, apply this to our fractions:
[tex]\[ \frac{8}{15} \times \frac{6}{5} \times \frac{1}{3} \][/tex]

Multiply the numerators together:
[tex]\[ 8 \times 6 \times 1 = 48 \][/tex]

Next, multiply the denominators together:
[tex]\[ 15 \times 5 \times 3 = 225 \][/tex]

This gives us the fraction:
[tex]\[ \frac{48}{225} \][/tex]

To simplify [tex]\(\frac{48}{225}\)[/tex], we need to find the greatest common divisor (GCD) of 48 and 225. The GCD of 48 and 225 is 3. Divide both the numerator and the denominator by their GCD:

[tex]\[ \frac{48 \div 3}{225 \div 3} = \frac{16}{75} \][/tex]

Therefore, the simplified product of [tex]\(\frac{8}{15}\)[/tex], [tex]\(\frac{6}{5}\)[/tex], and [tex]\(\frac{1}{3}\)[/tex] is:
[tex]\[ \frac{16}{75} \][/tex]

Hence, the correct answer is:
A. [tex]\(\frac{16}{75}\)[/tex]