The sum of [tex]\frac{1}{6}[/tex], [tex]\frac{2}{3}[/tex], and [tex]\frac{1}{4}[/tex] is:

A. [tex]\frac{2}{72}[/tex], or [tex]\frac{1}{36}[/tex].

B. [tex]\frac{11}{12}[/tex].

C. [tex]\frac{13}{12}[/tex], or [tex]1 \frac{1}{12}[/tex].

D. [tex]\frac{4}{12}[/tex], or [tex]\frac{1}{3}[/tex].



Answer :

To find the sum of the fractions [tex]\( \frac{1}{6} \)[/tex], [tex]\( \frac{2}{3} \)[/tex], and [tex]\( \frac{1}{4} \)[/tex] and determine which option is correct, we proceed step-by-step as follows:

1. Identify the fractions:
[tex]\[ \frac{1}{6}, \quad \frac{2}{3}, \quad \frac{1}{4} \][/tex]

2. Convert the fractions to decimals for initial sum calculation:
[tex]\[ \frac{1}{6} \approx 0.16666666666666666 \][/tex]
[tex]\[ \frac{2}{3} \approx 0.6666666666666666 \][/tex]
[tex]\[ \frac{1}{4} = 0.25 \][/tex]

3. Add the decimal equivalents:
[tex]\[ 0.16666666666666666 + 0.6666666666666666 + 0.25 = 1.0833333333333333 \][/tex]

4. Convert the sum back to a fraction and simplify:
[tex]\[ 1.0833333333333333 = \frac{13}{12} \][/tex]

Thus, the simplified fraction sum is:
[tex]\[ \frac{13}{12} \][/tex]

5. Compare the result with the given options:

A. [tex]\(\frac{2}{72} = \frac{1}{36}\)[/tex]

B. [tex]\(\frac{11}{12}\)[/tex]

C. [tex]\(\frac{13}{12}\)[/tex], or [tex]\(1 \frac{1}{12}\)[/tex]

D. [tex]\(\frac{4}{12} = \frac{1}{3}\)[/tex]

The correct option that matches our result of [tex]\( \frac{13}{12} \)[/tex] is:
[tex]\[ \boxed{\text{C}} \][/tex]