What is the point of intersection of the line [tex]2x + 3y = 6[/tex] and the x-axis?

A. [tex]\((0,2)\)[/tex]
B. [tex]\((2,0)\)[/tex]
C. [tex]\((3,0)\)[/tex]
D. [tex]\((0,3)\)[/tex]



Answer :

To find the point of intersection of the line [tex]\(2x + 3y = 6\)[/tex] with the [tex]\(x\)[/tex]-axis, we need to determine the [tex]\(x\)[/tex]-coordinate where this line intersects the [tex]\(x\)[/tex]-axis. On the [tex]\(x\)[/tex]-axis, the [tex]\(y\)[/tex]-coordinate is always 0.

Let's substitute [tex]\(y = 0\)[/tex] into the given equation [tex]\(2x + 3y = 6\)[/tex] and solve for [tex]\(x\)[/tex]:

1. Substitute [tex]\(y = 0\)[/tex] into the equation:
[tex]\[ 2x + 3(0) = 6 \][/tex]

2. Simplify the equation:
[tex]\[ 2x = 6 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{6}{2} = 3 \][/tex]

So the point of intersection with the [tex]\(x\)[/tex]-axis is [tex]\((3, 0)\)[/tex].

Thus, the correct answer is:
(C) [tex]\((3, 0)\)[/tex]