Answer :
Let's determine Omar's final bank balance by following the sequence of transactions shown in the table step-by-step.
1. Initial Balance:
Omar starts with an initial balance of \[tex]$219.80. 2. Pharmacy (`$[/tex]9 / 15`):
- Transaction: \[tex]$15.20 debited - New Balance: \$[/tex]219.80 (initial balance) - \[tex]$15.20 = \$[/tex]204.60
3. Paycheck (`[tex]$9 / 16`): - Transaction: \$[/tex]1015.50 credited
- New Balance: \[tex]$204.60 + \$[/tex]1015.50 = \[tex]$1220.10 4. Rent (`Check Number 156` on `9 / 18`): - Transaction: \$[/tex]425.00 debited
- New Balance: \[tex]$1220.10 - \$[/tex]425.00 = \[tex]$795.10 5. Dinner (`$[/tex]9 / 18`):
- Transaction: \[tex]$22.30 debited - New Balance: \$[/tex]795.10 - \[tex]$22.30 = \$[/tex]772.80
6. Movie Tickets (`[tex]$9 / 18`): - Transaction: \$[/tex]26.75 debited
- New Balance: \[tex]$772.80 - \$[/tex]26.75 = \[tex]$746.05 So, Omar's final bank balance is \$[/tex]746.05.
Now let's compare this balance to the given options:
1. \[tex]$761.25 2. \$[/tex]810.30
3. \[tex]$814.75 4. \$[/tex]1,186.25
None of the options match the calculated balance, which is \$746.05. It appears the closest options given, were not correct based on the transactions in the table.
1. Initial Balance:
Omar starts with an initial balance of \[tex]$219.80. 2. Pharmacy (`$[/tex]9 / 15`):
- Transaction: \[tex]$15.20 debited - New Balance: \$[/tex]219.80 (initial balance) - \[tex]$15.20 = \$[/tex]204.60
3. Paycheck (`[tex]$9 / 16`): - Transaction: \$[/tex]1015.50 credited
- New Balance: \[tex]$204.60 + \$[/tex]1015.50 = \[tex]$1220.10 4. Rent (`Check Number 156` on `9 / 18`): - Transaction: \$[/tex]425.00 debited
- New Balance: \[tex]$1220.10 - \$[/tex]425.00 = \[tex]$795.10 5. Dinner (`$[/tex]9 / 18`):
- Transaction: \[tex]$22.30 debited - New Balance: \$[/tex]795.10 - \[tex]$22.30 = \$[/tex]772.80
6. Movie Tickets (`[tex]$9 / 18`): - Transaction: \$[/tex]26.75 debited
- New Balance: \[tex]$772.80 - \$[/tex]26.75 = \[tex]$746.05 So, Omar's final bank balance is \$[/tex]746.05.
Now let's compare this balance to the given options:
1. \[tex]$761.25 2. \$[/tex]810.30
3. \[tex]$814.75 4. \$[/tex]1,186.25
None of the options match the calculated balance, which is \$746.05. It appears the closest options given, were not correct based on the transactions in the table.