Given [tex]$b(x)=|x+4|$[/tex], what is [tex]$b(-10)$[/tex]?

A. [tex]$-10$[/tex]
B. [tex]$-6$[/tex]
C. 6
D. 14



Answer :

To solve for [tex]\( b(-10) \)[/tex] given the function [tex]\( b(x) = |x + 4| \)[/tex], we need to substitute [tex]\( x = -10 \)[/tex] into the function and follow the steps:

1. Substitute [tex]\(-10\)[/tex] for [tex]\( x \)[/tex] in the function:
[tex]\[ b(-10) = |-10 + 4| \][/tex]

2. Perform the addition inside the absolute value:
[tex]\[ -10 + 4 = -6 \][/tex]

3. Take the absolute value of [tex]\(-6\)[/tex]:
[tex]\[ |-6| = 6 \][/tex]

Therefore, the value of [tex]\( b(-10) \)[/tex] is [tex]\( 6 \)[/tex].

Thus, the correct answer is:
6